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Scientific motivation

Non-linear effects explained 
special features of some 
variable stars light curves:

● RR- Lyrae and Cepheids 
(Christy 1962, 1964, 1966, 
1967)

● White Dwarfs (Brickhill 
1992, Brassard 1995, Wu 
2001, Montgomery 2005)

● SPB, Be and γ-Dor stars 
(Kurtz et al., 2015)
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Scientific motivation

Non-linear models for δ Sct stars

● The “Main Sequence Catastrophe” (Stellingwerf 1980)

● Amplitude Equation formalism (AE) (Dziembowski 1984, 
Buchler 1997)

● White Dwarfs non-linear models failed when applied to δ Sct 
stars (Balona 2012)
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Scientific motivation

Open issues in δ Sct studies that can be solved by non-linear models

● Density of their power spectra: identify non-linear terms from pulsation 
modes.
– Match with linear pulsation models

● Amplitudes in their power spectra: driving and damping mechanisms and 
pulsating mode selection
– Why some stars in the δ Sct instability strip do not pulsate?

– Why stars with similar stellar parameters have so different frequency distribution?
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PhD outline

Is it possible to characterize non-linear effects of δ Sct 
stars observationally?

 

1) Set a general non-linear model (Garrido, 1996)

2) Identify non-linear terms in δ Sct stars power spectra.

3) Search for any possible characterization
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Theoretical framework

Non-linear effects in δ Sct 
stars: 

● Interaction between the oscillation 
and the variation of the depth of the 
convective zone in the outer layer of 
a pulsating star (Brickhill, 1992; Wu, 
2001)

● The non-linear response of the 
emergent flux to changes of the local 
temperature at the stellar surface. 
( Brassard et al., 1995)

● Resonance (Dziembowski, 1982)

Extract of the GSC00144-03031 light curve 
observed by CoRoT. Steep ascends and slow 
descends move away from the characteristic 
sinusoidal shape.

Non-linear distortion processes

Harmonics and cross-frequency termsCoupled modes
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Theoretical framework

● General non-linear theory for pulsating stars
– Second order perturbations 

– Simple development of these eqs. in Kurtz, 2015

showing pulsations at combination frequencies as solutions.

● Modeling light curves
– Expression for the light variation ΔL/L, obtained by integrating the relative flux variation ΔF/F over the 

complete stellar disk, considering limb darkening effects.

 

● Modeling Fourier parameters
– The Simple model

– The Mode Coupling model (Breger and Montgomery, 2014; Bowman et al., 2016)

– The Volterra expansion model (Garrido and Rodríguez, 1996)
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Modeling Fourier parameters
● The Simple model

Theoretical framework

● The Mode Coupling model 

(Dziembowski, 1982)

(Breger and Montgomery, 2014)

(Bowman et al., 2016)

– Resonance conditions:

Y 1=A1 cos(2πν1 t+ϕ1)

Y 2=A2cos(2π ν2 t+ϕ2)

Y c(t )∝ A1 cos (2πν1 t+ϕ1)A 2 cos (2π ν2 t+ϕ2)
Y c(t )≡A c cos (2π ν+c t+ϕ+c)+A c cos (2πν−c t+ϕ−c)

Y c(t )∝Y 1(t )Y 2(t )

ν±c=ν1±ν2

ϕ±c=ϕ1±ϕ2

A c=
A1 A 2

2

ν±c=ν1±ν2

ωc≈2ω1ωc≈ω1+ω2 or

ν±c=ν1±ν2

ϕ±c=ϕ1±ϕ2

ν±c=ν1±ν2

A c=μc A1 A2

μc=
H

2σc γc I c

Coupling factor
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Theoretical framework

Modeling Fourier parameters
● The Volterra expansion model

Monoperiodic

Double-mode
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Methodology

Frequency Relation

● Best Parent Method (BPM):

➔ Non-linear least-squares fit of the 
family of combination frequencies 
(Best parents and their children) 
which best described the signal 
(minimum variance of the fit 
residual light curve).

➔  Finds the Best parents 
exhaustively 

ωc=±nωi±mω j±...
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Results

● TIC 9632550 (monoperiodic δ Sct star)

(Lares-Martiz, M. et al., 2020)

ω
0 
= (5.05496±0.00002) d-1
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Results

● KIC 5950759 (double mode HADS star)

(Lares-Martiz, M. et al., 2020)

12/32



  

Results

● HD 174966 (multiperiodic δ Sct star)

(Lares-Martiz, M. et al., 2020)
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Summary 1

● BPM is essentially a ‘standard’ approach of fitting sinusoids to the light-
curve, in this cases of the exact combination values resulting from the 
frequency relation between parents and children.

● BPM assures an exhaustive search for the 'best' parents, which can not 
be accomplished by any other algorithm of non-linear least-squares 
available at the moment.

● BPM do not add information to the residual light curve and guarantees 
that any remaining variance is not caused by the parent mode 
frequencies and their associated children frequencies.

● For mono-periodic stars, it achieves precision in frequencies 
approximately equal to those achieved by the O-C method.

● For double-mode and multi-periodic stars, it allows frequency structures 
to emerge from what was previously considered as noise. 

14/32



  

Theoretical framework 

Phase and amplitude relations

Considering complex generalized transfer functions,

from the Volterra expansion:

● Phase relation:

● Amplitude relation:

,

● Previous studies of these relations:
Cepheids:

Simon and Lee (1981)
HADS and SX Phe stars: 

Antonello (1986)
HADS and LADS: 

Garrido and Rodriguez (1996)
Balona (2012a,2012b,2016)

Source:
Antonello, 1986
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Theoretical framework

Hypothesis:

Combination frequency of HADS stars are from 

non-linear distortion processes

● There are too many combination frequencies to be eigenmodes themselves.
● Normally pulsate in radial modes. Assuring that the children frequencies are 

cross-terms of clear independent modes as parents.
● Mode coupling induce amplitude modulation of the modes. HADS do not 

show amplitude variability, supporting the assumption of their combination 
frequencies being of a non-linear distortion nature
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Theoretical framework

Discriminate combination 
frequencies of non-linear distortion 
processes from...

● Modulation of instrumental origin 
(Scargle, private communication)

●  Rotational splittings (Bowman, 2017)
● Resonantly excited modes (Breguer 

and Montgomery, 2014. Bowman, 
2016)

● Independent modes
Source: Bowman, 2017
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Methodology

● Compute the BPM to a set of HADS:
– Two-termed combinations:

– Order of the combination (O) < Nyquist frequency: 

– 15 HADS from TESS Sector 1 and 2 (Antoci, 2019. )

2 HADS from Kepler

1 HADS from CoRoT

● Build the Phase differences (ΔΦ) and Amplitude ratio plots (Ar) with the BPM 
Fourier parameters for the statistically significant combination frequencies. 
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Results

Case study KIC 5950759: Phase differences plot 
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Results

Case study KIC 5950759: Phase differences plot 

(Lares-Martiz, M. in prep.)
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Results

Phase difference plot of 17 HADS:

● The arguments of the ГO functions 
seem to decrease with higher 
combination orders .

● Each combination order has it own 
band of possible phase difference 
values

● 6 peculiar HADS that distorts the 
pattern:
– High rotation values for a HADS

– Parents do not obey strictly P1/P0 
period relation.
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Results

Phase difference plot of peculiar HADS: 
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Results

Case study KIC 5950759: Amplitude ratios plot 
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Results

Amplitude ratios plot of the 11 (non-peculiar) HADS:                 
(Fourier amplitude parameters in ppt) 
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Applicability examples

Template
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Applicability examples

Identify non-linearity 
nature 

● BPM of  74 LADS stars of TESS 
Sector 1 and 2

 

● Diagnostic plots: ΔΦ and Ar of 
each LADS over the alleged non-
linear distortion template
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Applicability examples

Match examples:

● Combination frequency of a      
non-linear distortion processes 
nature

● The parents are radial modes
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Applicability examples

Possible mode identification: 
TIC 150394126 

νn
νn+1

=0.838

f 1+ f 2=107.67141d−1

f 1=νn=49.08808 d−1

f 2=νn+1=58.58333d−1

Δν=9.49525d−1

● From Stellingwerf's 1979 period 
relations, one can derive:

0.818≤
ν2
ν3

≤0.831 f 1∼radialmodewith n=2
f 2∼radialmodewithn=3
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Applicability examples

No-Match examples

● Non-linear distortion 
process non-linearity of non-
radial parents (whose 
template pattern is still 
unknown)

● A resonantly excited mode.

● An instrumental systematic 
that is happen to be 
modulating the spectra.

● An independent mode.
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Applicability examples

Identify non-linearity nature
● Breger and Montgomery, 2014

– F66 is most likely to be a couple mode, 
whose parents are F40 and F26

– F6  is most likely to be a couple mode, either 
from the sum combination F3a+F3b or the 
harmonic 2F3a

● Diagnostic plot

– Confirms that F66 is not from a  non-linear 
distortion process. 

– Confirms that F6 is not from a  non-linear 
distortion process, neither from the sum 
F3a+F3b or the harmonic 2F3a 

Source: Breger et al., 2014.
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Summary 2 

● The study enable to empirically characterize the non-linear 
behavior of HADS stars.  

● Assuming that combination frequencies in HADS stars are 
owe to non-linear distortion processes, one can associate 
their  ГO  functions with this nature. 

● The study expose the possibility of mode identification and  
non-linearity nature identification.
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Conclusions and Future work 

● Most relevant conclusions
– A proper non-linear terms 

extraction from δ Sct stars power 
spectra can reveal frequency 
structure previously hidden that 
could match with the linear models

– Diagnostic plots would be a faster  
method to identify the non-
linearities nature (no need of 
tracking the variation between all 
the signal components ) ,  and with 
no previous condition needed to 
apply it ( no need of amplitude 
modulation). 

● Future work
– Building a HADS Catalog of 

space observations

– Spectroscopy follow up of δ Sct 
stars (HADS and LADS)

– Time frequency analysis

– Development of the analytical 
equations

– Statistically strengthen the 
Diagnostic plots procedure

– Study of the physical meaning of 
the ГO  functions
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