Two-dimensional Oscillation Program (TOP)

Daniel Roy Reese

LESIA, Paris Observatory

June 28, 2022

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)



History
e0

A brief history

LSB - Linear Solver Builder

@ precursor to TOP

@ perl interpreter to read equations
@ Coriolis force, Lorentz force, centrifugal deformation
°

Main contributors: Lorenzo Valdettaro, Michel Rieutord, Francois
Lignieres, Daniel R. Reese
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History
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A brief history

TOP — Two-dimension Oscillation Program
@ 2007-2009: initial version
o 1D and 2D real cases, then complex cases
o adiabatic pulsations
@ 2009-2011: extension to multi-domain calculations
@ 2011-2013: inclusion of non-adiabatic effects
e 2014-2018:
e various cases combined into 1 version of the code
o inclusion of Python interface
o development (still in progress) of a Domain Specific Language to
simplify the coding of equations
@ 2021: use of MAGMA library for GPU-based linear calculations
@ 2022: quadruple precision version of TOP

@ Main contributors: Daniel R. Reese, Bertrand Putigny, Alejandro
Estana, Francois Lignieres, Michel Rieutord, Jérome Ballot, Giovanni
Mirouh
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Models and pulsation equations
°

Overview

Two-dimensional Oscillation Program (TOP)

@ code devised for calculating pulsations modes in rapidly rotating
stellar models

@ highly flexible approach which facilitates the inclusion of new
physical ingredients

Prepro- Compi-
cessing lation Rowi
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Models and pulsation equations
o0

Equilibrium models

Polytropic models
@ Ligniéres et al. (2006), Reese et al. (2006), Ballot et al. (2010)
@ uniform rotation

@ barotropic structure (lines of constant P, p coincide)
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Models and pulsation equations
o0

Equilibrium models

Polytropic models

@ Ligniéres et al. (2006), Reese et al. (2006), Ballot et al. (2010)
@ uniform rotation

@ barotropic structure (lines of constant P, p coincide)

A

Self-Consistent Field (SCF) models
Jackson et al. (2005), MacGregor et al. (2007)

pre-imposed cylindrical rotation profile

barotropic structure (lines of constant P, p, T coincide)

energy equation applied on horizontal averages

A\
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Models and pulsation equations
oe

Equilibrium models

Evolution STEllaire en Rotation (ESTER) models
@ Espinosa Lara & Rieutord (2013), Rieutord et al. (2016)
@ energy equation solved locally
@ baroclinic structure (lines of constant P, p, T do not coincide)

@ rotation profile deduced from baroclinic effects
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Models and pulsation equations
oe

Equilibrium models

Evolution STEllaire en Rotation (ESTER) models
@ Espinosa Lara & Rieutord (2013), Rieutord et al. (2016)
@ energy equation solved locally
@ baroclinic structure (lines of constant P, p, T do not coincide)
@ rotation profile deduced from baroclinic effects

Other models

ASTEC models with perturbative deformation (Burke et al. 2011)
CESAM models (ongoing work)

preliminary calculations with ROTORC models (Deupree 1990, 1995)
1D Jupiter model subsequently deformed (Houdayer et al. 2019)
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Models and pulsation equations
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Pulsation equations

Continuity equation (conservation of mass)

”
Poisson’s equation

0=AV —47G (poép—gﬁpo)

Po

Lagrangian density perturbation
= equilibrium density profile

= Lagrangian displacement

N S
€ m s

= Eulerian perturbation to the gravitational potential

N
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Models and pulsation equations
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Pulsation equations

Euler's equations (conservation of momentum)
0 = [wtmQPE— 200 x [w+mQ)E— G x (ﬁxg)

o Py = (0P VP, P\ -
— §-V(w92€w)—V(6 )+V (M—é)—vw

w pulsation frequency
m = azimuthal order

Q = rotation profile
w

= distance to the rotation axis

6P = Lagrangian pressure perturbation
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Models and pulsation equations
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Pulsation equations (adiabatic)

Adiabatic relation

oP op
i il
P, Po

e advantages: simplicity, provides accurate frequencies
o disadvantages:

e no mode excitation
o 0T/ Tesr not provided (approximated via 6T /T)
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Models and pulsation equations
[e]e]e] lelelele]

Pulsation equations (non-adiabatic)

Energy conservation equation

@ unperturbed form:

45,
dt

<l
N

Po To = €00 —

@ perturbed form:

§F = Lagrangian perturbation to the energy flux
0S = Lagrangian entropy perturbation
de = Lagrangian perturbation to the energy production
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Models and pulsation equations
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Pulsation equations (non-adiabatic)

Energy flux

o total energy flux . .
Fo=FR+ FC

@ unperturbed form of radiative energy flux:

4acT3 - .
FR= X097, = VT,
3kopo

=
@ perturbed form of radiative energy flux:

oT )
OFF = {(1+XT) +xpp] FR

@ frozen convection approximation:

SFC ~ 0
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Models and pulsation equations
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Pulsation equations (non-adiabatic)

Equation of state, opacities, and nuclear reaction rates

d€ 6T op
- = €T(W)?o+€p(w)p*

o

@ in what follows we will neglect de
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Models and pulsation equations
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Pulsation equations

Boundary conditions

@ in the centre: regularity conditions

@ at infinity: gravitational potential perturbation goes to zero

@ at the surface:

oP

vvert. <P> = 0
o
ST oFt
T, [FR
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Models and pulsation equations
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Pulsation equations

o final result: a system of 10 equations with 10 unknowns:

oP - 4SS oT

D 57 ) 5”-:R7 = \U

P, Gy T,

@ although some of these variables can be cancelled algebraically, they
are needed to ensure good convergence
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Numerical implementation
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Numerical implementation

@ Express equations explicitly in
spheroidal coordinates (¢, 8, ¢) J
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Numerical implementation

[ Je]ele]

Numerical implementation

@ Express equations explicitly in A» >

spheroidal coordinates (¢, 6, ¢) ) : 77%§ G
o WA

@ Express unknowns as a sum of
spherical harmonics:

W(r,0,¢) = ZW(CYweaﬁ)

£=|m|
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Numerical implementation
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Numerical implementation

@ Express equations explicitly in : A » >

spheroidal coordinates (¢, 6, ¢) : 77 A (
V. ' A

@ Express unknowns as a sum of
spherical harmonics:

W(r,0,¢) = chwefb)

£=|m|

© Project equations on spherical
harmonic basis:

/ [equation] { Y;"}" sin dfd¢
4
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Numerical implementation
0e00

Horizontal discretisation — spectral approach

@ rotation leads to couplings between the different spherical harmonics
o the Coriolis force couples only adjacent harmonics (LSB more
adapted to this situation)
o the centrifugal deformation couples all harmonics

=01 2 3 456 789

0
0

9 87 6 5 432 1¢
9 87 6 5 4 32 1¢

Coriolis force Centrifugal deformation
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Numerical implementation

[e]e] le]

Horizontal discretisation — spectral approach

@ symmetry with respect to the equator causes even and odd £ values
to decouple

@ allows us to increase the resolution

@ toroidal component typically has the opposite parity
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Numerical implementation
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Numerical implementation

@ Express equations explicitly in
spheroidal coordinates (¢, 6, ¢)

4

@ Express unknowns as a sum of
spherical harmonics:

Y(r,0,0) = Y WL(C)YT(0,9)

£=|m|

© Project equations on spherical
harmonic basis:

/ [equation] { Y;"}" sin 6dfd¢
4w

Daniel Roy Reese

@ Discretise system in radial
direction and solve:

AX = wBX
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Numerical implementation
(1]

Solving the eigenvalue problem

Arnoldi-Chebyshev algorithm
@ iterative approach for finding several eigenvalues and associated
eigenfunctions with the largest amplitudes
@ projects original matrix on smaller subspace with approximately
equivalent solutions
o search eigenvalues of smaller matrix with direct method
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Numerical implementation
(1]

Solving the eigenvalue problem

Arnoldi-Chebyshev algorithm

@ iterative approach for finding several eigenvalues and associated
eigenfunctions with the largest amplitudes

@ projects original matrix on smaller subspace with approximately
equivalent solutions

o search eigenvalues of smaller matrix with direct method

V.

Spectral transformation

_ 1
Av=ABv < (A—oB) 'Bv=puv  where A=o+-
o)

@ when applying the Arnoldi-Chebyshev algorithm, or other iterative
methods, we need to solve (A—cB) X =Y

@ it is therefore necessary to construct and factorise A— oB
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Numerical implementation
(o] J

Polynomial eigenvalue problem

Solving (A—oB) X =Y
o X:[Xo...X,,_l]T, Y:[_yo...y,,_l]T
@ By induction, let us define (w;);c(y ,_1):
w1 = 0y, Wit1 = o(yis1 + wi)
n i -1 n—
Q Solve: xo = (X7 0'A)) (yo — Zi:ll Ait1 W,')

@ By induction: xj11 = yj11 + 0X;
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Numerical implementation
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Vertical discretisation — spectral approach

Characteristics

@ exponential convergence rate
o fixed grid
o factorisation of full matrix

o good parallelisation

@ suitable for polytropic models

v
Illustration .

@ Model: polytrope

@ Resolution: 5670 x 5670 o .
o N, =81
o N: =10 4

o Fill factor: 10.6 %

A
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Numerical implementation
0@000

Vertical discretisation — finite-differences

Characteristics

@ polynomial convergence

@ flexible choice of grid

@ factorisation of band matrix
e poor parallelisation

@ suitable for SCF models, Jupiter

models )
e Model: SCF

@ Resolution: 8080 x 8080
e (N,,N;) =(101,10)
o Lower bands: 130 '
o Upper bands: 140

e Fill factor (in band): 27.0 %

\
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Numerical implementation
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Vertical discretisation — spectral multi-domain

Characteristics

@ exponential convergence

o flexible choice of domains

. - Matrix
o factorisation of block tridiagonal _

matrix N
e good parallelisation \
o suitable for ESTER models J =

e

e Model: ESTER
@ Resolution: 10150 x 10150 \
o N, = \
(30, 55, 45, 40, 40, 50, 70, 70, 30) |
] Nt =5
o Fill factor (tridiagonal blocs):
25.4%
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Numerical implementation
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The multi-domain approach

@ assumption: only consecutive domains are coupled
= tridiagonal block matrix

A A Xi Y:

A An  Ax X2 B Yo
Anfl, n ;

An, n—1 An, n Xn Yn
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Numerical implementation
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Solving this system

@ use of Gauss' pivot to eliminate Aj1 ; and A; it1

@ one should not forget that matrix multiplication is not commutative

“Factorisation”

| A\

% & il
A = An Aitr,iv1 = Aiv1, it — Air, A AL i

Downward sweep

Yi=% Vi1 = Yig1 — Aipn ALY

ii Vi

Upward sweep

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)



Numerical implementation
[ Jele}
Numerical cost for adiabatic calculations

N, N, Memory (in Gb) Time (in min) Num. proc.
400 10 0.5 0.16 2
400 15 11 0.33 2
400 20 19 0.65 2
400 30 4.2 1.6 2
400 40 7.4 3.3 2
400 100 ~T70 24 25

Numerical cost for non-adiabatic calculations

N, Np, Memory (in Gb) Time (in min) Num. proc.
400 10 35

400 15 7.9

400 20 13.4 5 4

400 29 28.0 10 8

400 40 52.7 22 8

400 50 82.3 26 16

Daniel Roy Reese
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Numerical implementation
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Estimated accuracy

Polytrope

e Variational principle: Aw/w ~ 10~7 when N = 3 and Aw/w ~ 107>
when N =1.5

e Numerically: Aw/w > 10710

o Comparison with ACOR: Aw/w ~ 107° to 5 x 103 (Ouazzani et
al. 2012)

SCF
e Variational principle: Aw/w ~ 1073 to 1072
o Numerically: Aw/w ~ 107° to 10~*
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Numerical implementation
ooe

Estimated accuracy

ESTER: adiabatic case
e Variational principle (continuous model): Aw/w ~ 10712 to 10~8

e Variational principle (discontinous model): Aw/w ~ 1078 to 10~*

ESTER: non-adiabatic case

@ the problem is stiff: reduced numerical accuracy

@ estimated accuracy based on variational expression:
o frequencies: ~ 10~*
e excitation/damping rates: 107% to 1071

@ stability may be improved through a hybrid approach: adiabatic in
the centre, non-adiabatic near the surface
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Mode classification

Island Chaotic Whispering

Polytrope

SCF

o classification of acoustic modes in polytropic models based on ray
dynamics (Ligniéres & Georgeot, 2008, 2009)

@ extended to realistic (SCF) models (Reese et al. 2009)
@ automatic mode classification, tested on ESTER models (Mirouh et
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Mode classification

=1.0

M=25.0M, 7=1.3 «
w=214.1uHz m=30

25.0M, 3
©=250.8uHz m=20"

@ some classes of modes persist even in highly distorted models J
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Discovery of rosette modes

Q=0.380

20f

-10F

20t . ; f . .
0.0 0.2 0.4 0.6 0.8

o discovery of Rosette modes (Ballot et al. 2012)

1.0

Daniel Roy Reese
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Non-adiabatic pulsations in ESTER models

/
\ /"

ACOUStIC

@ red = driving regions
@ blue = damping regions
@ see Reese et al. 2017

—

Work

\

b

[ N

N 4

Work (vs. log T)
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Characterisation of rapidly rotating stars

e)

fifafs fo fy fs fe

Visibility (arbitrary units)

2 . c d e f v=6.873c/d

150 175 275 300

225 250
Frequency, v (in c/d) m=0, odd

@ characterisation of Altair using interferometry, spectroscopy, and
seismology (Bouchaud et al. 2020)

characterisation of 5 Pic using multicolour photometry (Zwintz et
al. 2019)
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Conclusion
o

Conclusion

@ TOP has played an important role in understanding pulsation modes
in rapidly rotating stars

@ it is starting to help us characterise such stars

@ ongoing developments which should make TOP easier to use, thus
facilitating new discoveries
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