< ∃⇒

# Two-dimensional Oscillation Program (TOP)

#### Daniel Roy Reese

LESIA, Paris Observatory

June 28, 2022



| History         | Models and pulsation equations | Numerical implementation | Results | Conclusion |  |
|-----------------|--------------------------------|--------------------------|---------|------------|--|
| •0              | 000000000                      | 0000000000000            | 00000   |            |  |
| A brief bictory |                                |                          |         |            |  |

#### LSB – Linear Solver Builder

precursor to TOP

II SLULY

- perl interpreter to read equations
- Coriolis force, Lorentz force, centrifugal deformation
- Main contributors: Lorenzo Valdettaro, Michel Rieutord, François Lignières, Daniel R. Reese

< ∃ →

| History   | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|-----------|--------------------------------|--------------------------|---------|------------|
| 00        |                                |                          |         |            |
| A brief h | istory                         |                          |         |            |

#### TOP – Two-dimension Oscillation Program

- 2007-2009: initial version
  - 1D and 2D real cases, then complex cases
  - adiabatic pulsations
- 2009-2011: extension to multi-domain calculations
- 2011-2013: inclusion of non-adiabatic effects
- 2014-2018:
  - various cases combined into 1 version of the code
  - inclusion of Python interface
  - development (still in progress) of a Domain Specific Language to simplify the coding of equations
- 2021: use of MAGMA library for GPU-based linear calculations
- 2022: quadruple precision version of TOP
- Main contributors: Daniel R. Reese, Bertrand Putigny, Alejandro Estaña, François Lignières, Michel Rieutord, Jérôme Ballot, Giovanni Mirouh

| History | Models and pulsation equations<br>●○○○○○○○○○                        | Numerical implementation | Results         | Conclusion<br>O |
|---------|---------------------------------------------------------------------|--------------------------|-----------------|-----------------|
| Ov      | erview                                                              |                          |                 |                 |
|         |                                                                     |                          |                 |                 |
|         | Two-dimensional Oscillation P                                       | rogram (TOP)             |                 |                 |
|         | <ul> <li>code devised for calculation<br/>stellar models</li> </ul> | ng pulsations modes in r | apidly rotating |                 |

• highly flexible approach which facilitates the inclusion of new physical ingredients



E > < E > 

э

| History   | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|-----------|--------------------------------|--------------------------|---------|------------|
| Equilibri | um models                      |                          | 00000   | 0          |
|           |                                |                          |         |            |

### Polytropic models

- Lignières et al. (2006), Reese et al. (2006), Ballot et al. (2010)
- uniform rotation
- barotropic structure (lines of constant P,  $\rho$  coincide)

∢ ≣ ▶

| History<br>00 | Models and pulsation equations | Numerical implementation | Results<br>00000 | Conclusion |
|---------------|--------------------------------|--------------------------|------------------|------------|
| Equilibriu    | ım models                      |                          |                  |            |

#### Polytropic models

- Lignières et al. (2006), Reese et al. (2006), Ballot et al. (2010)
- uniform rotation
- barotropic structure (lines of constant P,  $\rho$  coincide)

## Self-Consistent Field (SCF) models

- Jackson et al. (2005), MacGregor et al. (2007)
- pre-imposed cylindrical rotation profile
- barotropic structure (lines of constant P,  $\rho$ , T coincide)
- energy equation applied on horizontal averages

< ⊒ ►

| History    | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|------------|--------------------------------|--------------------------|---------|------------|
| 00         | 000000000                      | 0000000000000            | 00000   | 0          |
| Equilibriu | um models                      |                          |         |            |

#### Evolution STEllaire en Rotation (ESTER) models

- Espinosa Lara & Rieutord (2013), Rieutord et al. (2016)
- energy equation solved locally
- baroclinic structure (lines of constant P,  $\rho$ , T do not coincide)
- rotation profile deduced from baroclinic effects

| History<br>00 | Models and pulsation equations<br>○○●○○○○○○○ | Numerical implementation | Results | Conclusion |
|---------------|----------------------------------------------|--------------------------|---------|------------|
| Equilibri     | um models                                    |                          |         |            |

#### Evolution STEllaire en Rotation (ESTER) models

- Espinosa Lara & Rieutord (2013), Rieutord et al. (2016)
- energy equation solved locally
- baroclinic structure (lines of constant P,  $\rho$ , T do not coincide)
- rotation profile deduced from baroclinic effects

#### Other models

- ASTEC models with perturbative deformation (Burke et al. 2011)
- CESAM models (ongoing work)
- preliminary calculations with ROTORC models (Deupree 1990, 1995)
- 1D Jupiter model subsequently deformed (Houdayer et al. 2019)

| History   | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|-----------|--------------------------------|--------------------------|---------|------------|
|           | 000000000                      |                          |         |            |
| Pulsation | equations                      |                          |         |            |

### Continuity equation (conservation of mass)

$$\mathbf{0} = \frac{\delta\rho}{\rho_o} + \vec{\nabla}\cdot\vec{\xi}$$

#### Poisson's equation

$$0 = \Delta \Psi - 4\pi G \left( \rho_o \frac{\delta \rho}{\rho_o} - \vec{\xi} \cdot \vec{\nabla} \rho_o \right)$$

 $\delta\rho~=~$  Lagrangian density perturbation

$$o_o =$$
 equilibrium density profile

$$ar{\xi}$$
  $=$  Lagrangian displacement

 $\Psi$  = Eulerian perturbation to the gravitational potential

▲御▶ ★ 陸▶ ★ 陸▶ - 陸

| History                                      | Models and pulsation equations | Numerical implementation | Results | Conclusion |  |
|----------------------------------------------|--------------------------------|--------------------------|---------|------------|--|
| Pulsat                                       | ion equations                  |                          |         |            |  |
| Euler's equations (conservation of momentum) |                                |                          |         |            |  |

$$0 = [\omega + m\Omega]^{2} \vec{\xi} - 2i\vec{\Omega} \times [\omega + m\Omega] \vec{\xi} - \vec{\Omega} \times (\vec{\Omega} \times \vec{\xi})$$
  
$$- \vec{\xi} \cdot \vec{\nabla} (\varpi\Omega^{2}\vec{e}_{\varpi}) - \frac{P_{o}}{\rho_{o}} \vec{\nabla} \left(\frac{\delta P}{P_{o}}\right) + \frac{\vec{\nabla}P_{o}}{\rho_{o}} \left(\frac{\delta\rho}{\rho_{o}} - \frac{\delta P}{P_{o}}\right) - \vec{\nabla}\Psi$$
  
$$+ \vec{\nabla} \left(\frac{\vec{\xi} \cdot \vec{\nabla}P_{o}}{\rho_{o}}\right) + \frac{\left(\vec{\xi} \cdot \vec{\nabla}P_{o}\right)\vec{\nabla}\rho_{o} - \left(\vec{\xi} \cdot \vec{\nabla}\rho_{o}\right)\vec{\nabla}P_{o}}{\rho_{o}^{2}}$$

- $\omega$  = pulsation frequency
- m = azimuthal order
- $\Omega \hspace{.1 in}=\hspace{.1 in} \text{rotation profile}$
- arpi ~=~ distance to the rotation axis
- $\delta P$  = Lagrangian pressure perturbation

| History  | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|----------|--------------------------------|--------------------------|---------|------------|
| Pulsatio | n equations (adia              | hatic)                   |         |            |

### Adiabatic relation

$$\frac{\delta P}{P_o} = \Gamma_1 \frac{\delta \rho}{\rho_o}$$

- advantages: simplicity, provides accurate frequencies
- o disadvantages:
  - no mode excitation
  - $\delta T_{\rm eff}/T_{\rm eff}$  not provided (approximated via  $\delta T/T$ )

.≣⇒

| History   | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|-----------|--------------------------------|--------------------------|---------|------------|
| 00        | 0000000000                     | 0000000000000            | 00000   |            |
| Dulcation | a aquations (non               | adiabatic)               |         |            |

## Pulsation equations (non-adiabatic)

#### Energy conservation equation

• unperturbed form:

$$\rho_o T_o \frac{dS_o}{dt} = \epsilon_o \rho_o - \vec{\nabla} \cdot \vec{F_o}$$

o perturbed form:

$$i [\omega + m\Omega] \rho_o T_o \delta S = \epsilon_o \rho_o \left(\frac{\delta \epsilon}{\epsilon_o} + \frac{\delta \rho}{\rho_o}\right) - \vec{\nabla} \cdot \delta \vec{F} + \vec{\xi} \cdot \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F}_o\right) - \vec{\nabla} \cdot \left[\left(\vec{\xi} \cdot \vec{\nabla}\right) \vec{F}_o\right]$$

- $\delta \vec{F}$  = Lagrangian perturbation to the energy flux
- $\delta S$  = Lagrangian entropy perturbation
- $\delta \epsilon ~~=~$  Lagrangian perturbation to the energy production

| History<br>00 | Models and pulsation equation | ns Numerical implementation | Results | Conclusion |
|---------------|-------------------------------|-----------------------------|---------|------------|
| Pulsation     | equations (                   | (non-adiabatic)             |         |            |

## Energy flux

• total energy flux

$$\vec{F}_o = \vec{F}_o^{\mathrm{R}} + \vec{F}_o^{\mathrm{C}}$$

• unperturbed form of radiative energy flux:

$$ec{F}_{o}^{\mathrm{R}}=-rac{4acT_{o}^{3}}{3\kappa_{o}
ho_{o}}ec{
abla}T_{o}=-\chi_{o}ec{
abla}T_{o}$$

• perturbed form of radiative energy flux:

$$\begin{split} \delta \vec{F}^{\mathrm{R}} &= \left[ \left( 1 + \chi_{T} \right) \frac{\delta T}{T_{o}} + \chi_{\rho} \frac{\delta \rho}{\rho_{o}} \right] \vec{F}_{o}^{\mathrm{R}} \\ &- \chi_{o} \left[ T_{o} \vec{\nabla} \left( \frac{\delta T}{T_{o}} \right) + \vec{\xi} \cdot \vec{\nabla} \left( \vec{\nabla} T_{o} \right) - \vec{\nabla} \left( \vec{\xi} \cdot \vec{\nabla} T_{o} \right) \right] \end{split}$$

• frozen convection approximation:

$$\delta \vec{F}^{\mathrm{C}} \simeq \vec{\mathsf{0}}$$

| History  | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|----------|--------------------------------|--------------------------|---------|------------|
| 00       | 0000000000                     | 0000000000000            | 00000   |            |
| Pulsatio | n equations (non-              | -adiabatic)              |         |            |

#### Equation of state, opacities, and nuclear reaction rates

$$\begin{split} \frac{\delta P}{P_o} &= \Gamma_1 \frac{\delta \rho}{\rho_o} + P_T \frac{\delta S}{c_v} = P_\rho \frac{\delta \rho}{\rho_o} + P_T \frac{\delta T}{T_o} \\ \frac{\delta T}{T_o} &= \frac{\delta S}{c_v} + (\Gamma_3 - 1) \frac{\delta \rho}{\rho_o} = \frac{\delta S}{c_p} + \nabla_{ad} \frac{\delta P}{P_o} \\ \frac{\delta \chi}{\chi_o} &= \chi_\rho \frac{\delta \rho}{\rho_o} + \chi_T \frac{\delta T}{T_o} \\ \frac{\delta \epsilon}{\epsilon_o} &= \epsilon_T(\omega) \frac{\delta T}{T_o} + \epsilon_\rho(\omega) \frac{\delta \rho}{\rho_o} \end{split}$$

• in what follows we will neglect  $\delta\epsilon$ 

| History | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|---------|--------------------------------|--------------------------|---------|------------|
|         | 0000000000                     |                          |         |            |
| Pulsati | on equations                   |                          |         |            |

### Boundary conditions

- in the centre: regularity conditions
- at infinity: gravitational potential perturbation goes to zero
- at the surface:

$$\nabla_{\text{vert.}} \left( \frac{\delta P}{P_o} \right) = 0$$
$$4 \frac{\delta T}{T_o} = \frac{\delta F^{\text{I}}}{F_o^{\text{R}}}$$

| History  | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|----------|--------------------------------|--------------------------|---------|------------|
| 00       | 000000000                      | 0000000000000            | 00000   |            |
| Pulsatic | on equations                   |                          |         |            |

#### Summary

• final result: a system of 10 equations with 10 unknowns:

$$\frac{\delta P}{P_o}, \quad \vec{\xi}, \quad \frac{\delta S}{c_{\rm p}}, \quad \delta \vec{F}^{\rm R}, \quad \frac{\delta T}{T_o}, \quad \Psi$$

• although some of these variables can be cancelled algebraically, they are needed to ensure good convergence

| History<br>00 | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|---------------|--------------------------------|--------------------------|---------|------------|
| Numerica      | al implementation              |                          |         |            |

 Express equations explicitly in spheroidal coordinates  $(\zeta, \theta, \phi)$ 



·문▶ ★ 문▶ · · 문

History

Models and pulsation equations

Numerical implementation

Results

Conclusion

# Numerical implementation

- Express equations explicitly in spheroidal coordinates  $(\zeta, \theta, \phi)$
- Express unknowns as a sum of spherical harmonics:

$$\Psi(r,\theta,\phi) = \sum_{\ell=|m|}^{\infty} \Psi_m^{\ell'}(\zeta) Y_{\ell'}^m(\theta,\phi)$$



History

Models and pulsation equations

Numerical implementation

Results

Conclusion

# Numerical implementation

- Express equations explicitly in spheroidal coordinates  $(\zeta, \theta, \phi)$
- Express unknowns as a sum of spherical harmonics:

$$\Psi(r,\theta,\phi) = \sum_{\ell=|m|}^{\infty} \Psi_m^{\ell'}(\zeta) Y_{\ell'}^m(\theta,\phi)$$

• Project equations on spherical harmonic basis:  

$$\iint_{4\pi} [\text{equation}] \{Y_{\ell}^m\}^* \sin \theta d\theta d\phi$$



| Hariza  | ntal discretization            | an actual annua                         | ab      |            |
|---------|--------------------------------|-----------------------------------------|---------|------------|
| 00      | 0000000000                     | 000000000000000000000000000000000000000 | 00000   | 0          |
| History | Models and pulsation equations | Numerical implementation                | Results | Conclusion |

## Horizontal discretisation – spectral approach

- rotation leads to couplings between the different spherical harmonics
  - the Coriolis force couples only adjacent harmonics (LSB more adapted to this situation)
  - the centrifugal deformation couples all harmonics





Centrifugal deformation

∃ ⊳

| History  | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|----------|--------------------------------|--------------------------|---------|------------|
| Harizont | al discratication of           | nactral annroach         |         |            |

## Horizontal discretisation – spectral approach

- $\bullet$  symmetry with respect to the equator causes even and odd  $\ell$  values to decouple
- allows us to increase the resolution
- toroidal component typically has the opposite parity



| History<br>00 | Models and pulsation equations | Numerical implementation | Results | Conclusio |
|---------------|--------------------------------|--------------------------|---------|-----------|
| N 1           |                                |                          |         |           |

## Numerical implementation

- Express equations explicitly in spheroidal coordinates  $(\zeta, \theta, \phi)$
- Express unknowns as a sum of spherical harmonics:

$$\Psi(r,\theta,\phi) = \sum_{\ell=|m|}^{\infty} \Psi_m^{\ell'}(\zeta) Y_{\ell'}^m(\theta,\phi)$$



Project equations on spherical harmonic basis:

$$\iint_{4\pi} [\text{equation}] \{Y_{\ell}^{m}\}^* \sin\theta d\theta d\phi$$

 Discretise system in radial direction and solve:

 $\mathcal{A}\vec{x} = \omega \mathcal{B}\vec{x}$ 

| History<br>00 | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|---------------|--------------------------------|--------------------------|---------|------------|
| Solving t     | he eigenvalue p                | problem                  |         |            |

#### Arnoldi-Chebyshev algorithm

- iterative approach for finding several eigenvalues and associated eigenfunctions with the largest amplitudes
- projects original matrix on smaller subspace with approximately equivalent solutions
  - search eigenvalues of smaller matrix with direct method

| History   | Models and pulsation equations | Numerical implementation | Results | Conclusion<br>O |
|-----------|--------------------------------|--------------------------|---------|-----------------|
| Solving t | he eigenvalue pro              | blem                     |         |                 |

#### Arnoldi-Chebyshev algorithm

- iterative approach for finding several eigenvalues and associated eigenfunctions with the largest amplitudes
- projects original matrix on smaller subspace with approximately equivalent solutions
  - search eigenvalues of smaller matrix with direct method

#### Spectral transformation

$$A\mathbf{v} = \lambda B\mathbf{v} \iff (\mathbf{A} - \sigma B)^{-1} B\mathbf{v} = \mu \mathbf{v}$$
 where  $\lambda = \sigma$ 

- when applying the Arnoldi-Chebyshev algorithm, or other iterative methods, we need to solve  $(A \sigma B) X = Y$
- it is therefore necessary to construct and factorise  $A \sigma B$

< 三→ 三

| History | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|---------|--------------------------------|--------------------------|---------|------------|
|         |                                | 000000000000             |         |            |
|         |                                |                          |         |            |

## Polynomial eigenvalue problem



#### Solving $(\mathcal{A} - \sigma \mathcal{B}) X = Y$

**1** 
$$X = [x_0 \dots x_{n-1}]^T, \qquad Y = [y_0 \dots y_{n-1}]^T$$

**2** By induction, let us define  $(w_i)_{i \in [1,n-1]}$ :  $w_1 = \sigma y_1, \qquad w_{i+1} = \sigma(y_{i+1} + w_i)$ 

**3** Solve: 
$$x_0 = \left(\sum_{i=0}^n \sigma^i A_i\right)^{-1} \left(y_0 - \sum_{i=1}^{n-1} A_{i+1} w_i\right)$$

• By induction:  $x_{i+1} = y_{i+1} + \sigma x_i$ 

| History<br>00 | Models and pulsation equations | Numerical implementation | Results<br>00000 | Conclusion<br>O |
|---------------|--------------------------------|--------------------------|------------------|-----------------|
| Vertical of   | discretisation –               | spectral approach        |                  |                 |

#### Characteristics

- exponential convergence rate
- fixed grid
- factorisation of full matrix
  - good parallelisation
- suitable for polytropic models

### Illustration

- Model: polytrope
- **Resolution**: 5670 × 5670

• 
$$N_t = 10$$

• Fill factor: 10.6%



| History | Models and pulsation equations | Numerical implementation |
|---------|--------------------------------|--------------------------|
|         |                                | 000000000000000          |
|         |                                |                          |

Results

Conclusion

# Vertical discretisation – finite-differences

#### Characteristics

- polynomial convergence
- flexible choice of grid
- factorisation of band matrix
  - poor parallelisation
- suitable for SCF models, Jupiter models

## Illustration

- Model: SCF
- **Resolution**: 8080 × 8080
  - $(N_r, N_t) = (101, 10)$
  - Lower bands: 130
  - Upper bands: 140
- Fill factor (in band): 27.0%



| Hist | ory |
|------|-----|
| 00   |     |

Models and pulsation equations

Numerical implementation

Results

Conclusion

## Vertical discretisation – spectral multi-domain

#### Characteristics

- exponential convergence
- flexible choice of domains
- factorisation of block tridiagonal matrix
  - good parallelisation
- suitable for ESTER models

## Illustration

- Model: ESTER
- **Resolution**: 10150 × 10150
  - N<sub>r</sub> =
    (30, 55, 45, 40, 40, 50, 70, 70, 30)
    N<sub>t</sub> = 5
- Fill factor (tridiagonal blocs): 25.4 %



| History | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|---------|--------------------------------|--------------------------|---------|------------|
| 00      | 0000000000                     | 00000000000000           | 00000   |            |
| The m   | ulti-domain approa             | ch                       |         |            |

## • assumption: only consecutive domains are coupled

 $\Rightarrow\,$  tridiagonal block matrix

$$\begin{bmatrix} A_{11} & A_{12} & & \\ A_{21} & A_{22} & A_{23} & \\ & & \ddots & A_{n-1,n} \\ & & & A_{n,n-1} & A_{n,n} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

▲ 프 ▶ = 프

| History<br>00 | Models and pulsation equations | Numerical implementation           | Results | Conclusion |
|---------------|--------------------------------|------------------------------------|---------|------------|
|               |                                |                                    |         |            |
| Solving       | g this system                  |                                    |         |            |
| • u:          | se of Gauss' pivot to elin     | ninate $A_{i+1,i}$ and $A_{i,i+1}$ |         |            |

• one should not forget that matrix multiplication is not commutative

"Factorisation"

$$\tilde{A}_{11} = A_{11}$$
  $\tilde{A}_{i+1, i+1} = A_{i+1, i+1} - A_{i+1, i}\tilde{A}_{i, i}^{-1}A_{i, i+1}$ 

Downward sweep

$$ilde{Y}_1 = Y_1$$
  $ilde{Y}_{i+1} = Y_{i+1} - A_{i+1,i} ilde{A}_{i,i}^{-1} ilde{Y}_i$ 

Upward sweep

$$X_n = \tilde{A}_{n,n}^{-1} \tilde{Y}_n$$
  $X_{i-1} = \tilde{A}_{i-1,i-1}^{-1} \left( \tilde{Y}_{i-1} - A_{i-1,i} \tilde{X}_i \right)$ 

★ E ▶ E

| History Mod | els and pulsation equations | Numerical implementation                | Results | Conclusio |
|-------------|-----------------------------|-----------------------------------------|---------|-----------|
| 00 000      | 00000000                    | 000000000000000000000000000000000000000 | 00000   | 0         |

#### Numerical cost for adiabatic calculations

| Nr  | $N_{\mathrm{h}}$ | Memory (in Gb) | Time (in min) | Num. proc. |
|-----|------------------|----------------|---------------|------------|
| 400 | 10               | 0.5            | 0.16          | 2          |
| 400 | 15               | 1.1            | 0.33          | 2          |
| 400 | 20               | 1.9            | 0.65          | 2          |
| 400 | 30               | 4.2            | 1.6           | 2          |
| 400 | 40               | 7.4            | 3.3           | 2          |
| 400 | 100              | ${\sim}70$     | 24            | 25         |
|     |                  |                |               |            |

## Numerical cost for non-adiabatic calculations

| $N_{\rm r}$ | $N_{\mathrm{h}}$ | Memory (in Gb) | Time (in min) | Num. proc. |
|-------------|------------------|----------------|---------------|------------|
| 400         | 10               | 3.5            |               |            |
| 400         | 15               | 7.9            |               |            |
| 400         | 20               | 13.4           | 5             | 4          |
| 400         | 29               | 28.0           | 10            | 8          |
| 400         | 40               | 52.7           | 22            | 8          |
| 400         | 50               | 82.3           | 26            | 16         |

| History<br>00 | Models and pulsation equations | Numerical implementation<br>○○○○○○○○○○○○ | Results<br>00000 | Conclusion |
|---------------|--------------------------------|------------------------------------------|------------------|------------|
| Estimate      | d accuracy                     |                                          |                  |            |

#### Polytrope

- Variational principle:  $\Delta\omega/\omega\sim 10^{-7}$  when N=3 and  $\Delta\omega/\omega\sim 10^{-5}$  when N=1.5
- Numerically:  $\Delta \omega / \omega \gtrsim 10^{-10}$
- Comparison with ACOR:  $\Delta\omega/\omega\sim 10^{-6}$  to  $5 imes 10^{-3}$  (Ouazzani et al. 2012)

#### $\mathsf{SCF}$

- Variational principle:  $\Delta \omega / \omega \sim 10^{-3}$  to  $10^{-2}$
- Numerically:  $\Delta \omega / \omega \sim 10^{-5}$  to  $10^{-4}$

< ≣ >

| History<br>00 | Models and pulsation equations | Numerical implementation | Results<br>00000 | Conclusion |
|---------------|--------------------------------|--------------------------|------------------|------------|
| Estimate      | d accuracy                     |                          |                  |            |

#### ESTER: adiabatic case

- Variational principle (continuous model):  $\Delta \omega / \omega \sim 10^{-12}$  to  $10^{-8}$
- Variational principle (discontinous model):  $\Delta \omega / \omega \sim 10^{-8}$  to  $10^{-4}$

### ESTER: non-adiabatic case

- the problem is stiff: reduced numerical accuracy
- estimated accuracy based on variational expression:
  - $\bullet~frequencies:~\sim 10^{-4}$
  - excitation/damping rates:  $10^{-2}$  to  $10^{-1}$
- stability may be improved through a hybrid approach: adiabatic in the centre, non-adiabatic near the surface



- classification of acoustic modes in polytropic models based on ray dynamics (Lignières & Georgeot, 2008, 2009)
- extended to realistic (SCF) models (Reese et al. 2009)
- automatic mode classification, tested on ESTER models (Mirouh et al. 2019)

| History | Models and pulsation equations | Numerical implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Results<br>○●○○○ | Conclusion |
|---------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| Mode    | classification                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |
|         |                                | and the second s | Marrie           |            |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                |            |

#### • some classes of modes persist even in highly distorted models

 $M = 25.0 M_{\odot} \eta = 1.3 \alpha = 1.0 \omega = 214.1 \mu Hz m = 30^{-1}$ 

 $M = 25.0 M_{\odot} \eta = 2.7 \alpha = 2.0 \omega = 250.8 \mu Hz m = 20^{-1}$ 

イロト 不聞 とくほとう ほとう

э

| Hist | ory |
|------|-----|
| 00   |     |

Models and pulsation equations

Numerical implementation

Results 00●00

≣ ▶

Conclusion

## Discovery of rosette modes



discovery of Rosette modes (Ballot et al. 2012)

History

Models and pulsation equations

Numerical implementation

Results 000●0

< ∃⇒

Conclusion

## Non-adiabatic pulsations in ESTER models



• see Reese et al. 2017

| History<br>00 | Models and pulsation equations | Numerical implementation | Results<br>0000● | Conclusion<br>O |
|---------------|--------------------------------|--------------------------|------------------|-----------------|
| Characte      | risation of rapidly r          | rotating stars           |                  |                 |



- characterisation of Altair using interferometry, spectroscopy, and seismology (Bouchaud et al. 2020)
- characterisation of  $\beta$  Pic using multicolour photometry (Zwintz et al. 2019)

| History | Models and pulsation equations | Numerical implementation | Results | Conclusion |
|---------|--------------------------------|--------------------------|---------|------------|
|         |                                |                          |         | •          |
| Conclu  | usion                          |                          |         |            |

- TOP has played an important role in understanding pulsation modes in rapidly rotating stars
- it is starting to help us characterise such stars
- ongoing developments which should make TOP easier to use, thus facilitating new discoveries