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A brief history

LSB – Linear Solver Builder

precursor to TOP

perl interpreter to read equations

Coriolis force, Lorentz force, centrifugal deformation

Main contributors: Lorenzo Valdettaro, Michel Rieutord, François
Lignières, Daniel R. Reese
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A brief history

TOP – Two-dimension Oscillation Program

2007-2009: initial version

1D and 2D real cases, then complex cases
adiabatic pulsations

2009-2011: extension to multi-domain calculations

2011-2013: inclusion of non-adiabatic effects

2014-2018:

various cases combined into 1 version of the code
inclusion of Python interface
development (still in progress) of a Domain Specific Language to
simplify the coding of equations

2021: use of MAGMA library for GPU-based linear calculations

2022: quadruple precision version of TOP

Main contributors: Daniel R. Reese, Bertrand Putigny, Alejandro
Estaña, François Lignières, Michel Rieutord, Jérôme Ballot, Giovanni
Mirouh
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Overview

Two-dimensional Oscillation Program (TOP)

code devised for calculating pulsations modes in rapidly rotating
stellar models

highly flexible approach which facilitates the inclusion of new
physical ingredients
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Core program
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Equilibrium models

Polytropic models

Lignières et al. (2006), Reese et al. (2006), Ballot et al. (2010)

uniform rotation

barotropic structure (lines of constant P, ρ coincide)

Self-Consistent Field (SCF) models

Jackson et al. (2005), MacGregor et al. (2007)

pre-imposed cylindrical rotation profile

barotropic structure (lines of constant P, ρ, T coincide)

energy equation applied on horizontal averages
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Equilibrium models

Evolution STEllaire en Rotation (ESTER) models

Espinosa Lara & Rieutord (2013), Rieutord et al. (2016)

energy equation solved locally

baroclinic structure (lines of constant P, ρ, T do not coincide)

rotation profile deduced from baroclinic effects

Other models

ASTEC models with perturbative deformation (Burke et al. 2011)

CESAM models (ongoing work)

preliminary calculations with ROTORC models (Deupree 1990, 1995)

1D Jupiter model subsequently deformed (Houdayer et al. 2019)
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Pulsation equations

Continuity equation (conservation of mass)

0 =
δρ

ρo
+ ~∇ · ~ξ

Poisson’s equation

0 = ∆Ψ− 4πG

(
ρo
δρ

ρo
− ~ξ · ~∇ρo

)

δρ = Lagrangian density perturbation

ρo = equilibrium density profile
~ξ = Lagrangian displacement

Ψ = Eulerian perturbation to the gravitational potential
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Pulsation equations

Euler’s equations (conservation of momentum)

0 = [ω + mΩ]2 ~ξ − 2i~Ω× [ω + mΩ] ~ξ − ~Ω×
(
~Ω× ~ξ

)
− ~ξ · ~∇

(
$Ω2~e$

)
− Po

ρo
~∇
(
δP

Po

)
+
~∇Po

ρo

(
δρ

ρo
− δP

Po

)
− ~∇Ψ

+ ~∇

(
~ξ · ~∇Po

ρo

)
+

(
~ξ · ~∇Po

)
~∇ρo −

(
~ξ · ~∇ρo

)
~∇Po

ρ2o

ω = pulsation frequency

m = azimuthal order

Ω = rotation profile

$ = distance to the rotation axis

δP = Lagrangian pressure perturbation
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Pulsation equations (adiabatic)

Adiabatic relation

δP

Po
= Γ1

δρ

ρo

advantages: simplicity, provides accurate frequencies

disadvantages:

no mode excitation
δTeff/Teff not provided (approximated via δT/T )
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Pulsation equations (non-adiabatic)

Energy conservation equation

unperturbed form:

ρoTo
dSo
dt

= εoρo − ~∇ · ~Fo

perturbed form:

i [ω + mΩ] ρoToδS = εoρo

(
δε

εo
+
δρ

ρo

)
− ~∇ · δ ~F

+ ~ξ · ~∇
(
~∇ · ~Fo

)
− ~∇ ·

[(
~ξ · ~∇

)
~Fo

]

δ ~F = Lagrangian perturbation to the energy flux

δS = Lagrangian entropy perturbation

δε = Lagrangian perturbation to the energy production
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Pulsation equations (non-adiabatic)

Energy flux

total energy flux
~Fo = ~FR

o + ~FC
o

unperturbed form of radiative energy flux:

~FR
o = −4acT 3

o

3κoρo
~∇To = −χo

~∇To

perturbed form of radiative energy flux:

δ ~FR =

[
(1 + χT )

δT

To
+ χρ

δρ

ρo

]
~FR
o

− χo

[
To
~∇
(
δT

To

)
+ ~ξ · ~∇

(
~∇To

)
− ~∇

(
~ξ · ~∇To

)]
frozen convection approximation:

δ ~FC ' ~0
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Pulsation equations (non-adiabatic)

Equation of state, opacities, and nuclear reaction rates

δP

Po
= Γ1

δρ

ρo
+ PT

δS

cv
= Pρ

δρ

ρo
+ PT

δT

To

δT

To
=

δS

cv
+ (Γ3 − 1)

δρ

ρo
=
δS

cp
+∇ad

δP

Po

δχ

χo
= χρ

δρ

ρo
+ χT

δT

To

δε

εo
= εT (ω)

δT

To
+ ερ(ω)

δρ

ρo

in what follows we will neglect δε
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Pulsation equations

Boundary conditions

in the centre: regularity conditions

at infinity: gravitational potential perturbation goes to zero

at the surface:

∇vert.

(
δP

Po

)
= 0

4
δT

To
=

δFR

FR
o

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)



History Models and pulsation equations Numerical implementation Results Conclusion

Pulsation equations

Summary

final result: a system of 10 equations with 10 unknowns:

δP

Po
, ~ξ,

δS

cp
, δ ~FR,

δT

To
, Ψ

although some of these variables can be cancelled algebraically, they
are needed to ensure good convergence
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Numerical implementation

1 Express equations explicitly in
spheroidal coordinates (ζ, θ, φ)

2 Express unknowns as a sum of
spherical harmonics:

Ψ(r , θ, φ) =
∞∑

`=|m|

Ψ`′

m(ζ)Ym
`′ (θ, φ)

3 Project equations on spherical
harmonic basis:∫∫
4π

[equation] {Ym
` }
∗ sin θdθdφ

4 Discretise system in radial
direction and solve:

A~x = ωB~x

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Horizontal discretisation – spectral approach

rotation leads to couplings between the different spherical harmonics

the Coriolis force couples only adjacent harmonics (LSB more
adapted to this situation)
the centrifugal deformation couples all harmonics

Coriolis force Centrifugal deformation

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Horizontal discretisation – spectral approach

symmetry with respect to the equator causes even and odd ` values
to decouple

allows us to increase the resolution

toroidal component typically has the opposite parity
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Solving the eigenvalue problem

Arnoldi-Chebyshev algorithm

iterative approach for finding several eigenvalues and associated
eigenfunctions with the largest amplitudes

projects original matrix on smaller subspace with approximately
equivalent solutions

search eigenvalues of smaller matrix with direct method

Spectral transformation

Av = λBv ⇔ (A− σB)−1 Bv = µv where λ = σ +
1

µ

when applying the Arnoldi-Chebyshev algorithm, or other iterative
methods, we need to solve (A− σB)X = Y

it is therefore necessary to construct and factorise A− σB

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Polynomial eigenvalue problem

n∑
i=0

λiAiv = 0 ⇐⇒ Ax = λBx where

A =


A0 . . .
. Id . .

. .

.
.
. .

. . . Id

 , B =


−A1 −A2 · · · −An
Id . . .

.

.
.
. . .

. . Id .

 , x =


v
λv

.

.

.

λn−1v



Solving (A− σB)X = Y

1 X = [x0 . . . xn−1]T , Y = [y0 . . . yn−1]T

2 By induction, let us define (wi )i∈[1,n−1]:

w1 = σy1, wi+1 = σ(yi+1 + wi )

3 Solve: x0 =
(∑n

i=0 σ
iAi

)−1 (
y0 −

∑n−1
i=1 Ai+1wi

)
4 By induction: xi+1 = yi+1 + σxi

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Vertical discretisation – spectral approach

Characteristics

exponential convergence rate

fixed grid

factorisation of full matrix

good parallelisation

suitable for polytropic models

Illustration

Model: polytrope

Resolution: 5670× 5670

Nr = 81
Nt = 10

Fill factor: 10.6 %

Matrix

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Vertical discretisation – finite-differences

Characteristics

polynomial convergence

flexible choice of grid

factorisation of band matrix

poor parallelisation

suitable for SCF models, Jupiter
models

Illustration

Model: SCF

Resolution: 8080× 8080

(Nr ,Nt) = (101, 10)
Lower bands: 130
Upper bands: 140

Fill factor (in band): 27.0 %

Matrix

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Vertical discretisation – spectral multi-domain

Characteristics

exponential convergence

flexible choice of domains

factorisation of block tridiagonal
matrix

good parallelisation

suitable for ESTER models

Illustration

Model: ESTER

Resolution: 10150× 10150

Nr =
(30, 55, 45, 40, 40, 50, 70, 70, 30)
Nt = 5

Fill factor (tridiagonal blocs):
25.4 %

Matrix

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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The multi-domain approach

assumption: only consecutive domains are coupled

⇒ tridiagonal block matrix


A11 A12

A21 A22 A23

. . . An−1, n
An, n−1 An, n




X1

X2

...
Xn

 =


Y1

Y2

...
Yn
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Solving this system

use of Gauss’ pivot to eliminate Ai+1, i and Ai, i+1

one should not forget that matrix multiplication is not commutative

“Factorisation”

Ã11 = A11 Ãi+1, i+1 = Ai+1, i+1 − Ai+1, i Ã
−1
i, i Ai, i+1

Downward sweep

Ỹ1 = Y1 Ỹi+1 = Yi+1 − Ai+1, i Ã
−1
i, i Ỹi

Upward sweep

Xn = Ã−1n, nỸn Xi−1 = Ã−1i−1, i−1

(
Ỹi−1 − Ai−1, i X̃i

)

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Numerical cost for adiabatic calculations

Nr Nh Memory (in Gb) Time (in min) Num. proc.
400 10 0.5 0.16 2
400 15 1.1 0.33 2
400 20 1.9 0.65 2
400 30 4.2 1.6 2
400 40 7.4 3.3 2
400 100 ∼70 24 25

Numerical cost for non-adiabatic calculations

Nr Nh Memory (in Gb) Time (in min) Num. proc.
400 10 3.5
400 15 7.9
400 20 13.4 5 4
400 29 28.0 10 8
400 40 52.7 22 8
400 50 82.3 26 16
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Estimated accuracy

Polytrope

Variational principle: ∆ω/ω ∼ 10−7 when N = 3 and ∆ω/ω ∼ 10−5

when N = 1.5

Numerically: ∆ω/ω & 10−10

Comparison with ACOR: ∆ω/ω ∼ 10−6 to 5× 10−3 (Ouazzani et
al. 2012)

SCF

Variational principle: ∆ω/ω ∼ 10−3 to 10−2

Numerically: ∆ω/ω ∼ 10−5 to 10−4

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Estimated accuracy

ESTER: adiabatic case

Variational principle (continuous model): ∆ω/ω ∼ 10−12 to 10−8

Variational principle (discontinous model): ∆ω/ω ∼ 10−8 to 10−4

ESTER: non-adiabatic case

the problem is stiff: reduced numerical accuracy

estimated accuracy based on variational expression:

frequencies: ∼ 10−4

excitation/damping rates: 10−2 to 10−1

stability may be improved through a hybrid approach: adiabatic in
the centre, non-adiabatic near the surface

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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Mode classification

Island Chaotic Whispering
gallery

P
o
ly
tr
o
p
e

S
C
F

classification of acoustic modes in polytropic models based on ray
dynamics (Lignières & Georgeot, 2008, 2009)

extended to realistic (SCF) models (Reese et al. 2009)

automatic mode classification, tested on ESTER models (Mirouh et
al. 2019)
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Mode classification

some classes of modes persist even in highly distorted models
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Discovery of rosette modes

discovery of Rosette modes (Ballot et al. 2012)
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Non-adiabatic pulsations in ESTER models

Acoustic Work Work (vs. logT )

red = driving regions

blue = damping regions

see Reese et al. 2017
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Characterisation of rapidly rotating stars
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characterisation of Altair using interferometry, spectroscopy, and
seismology (Bouchaud et al. 2020)

characterisation of β Pic using multicolour photometry (Zwintz et
al. 2019)
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Conclusion

TOP has played an important role in understanding pulsation modes
in rapidly rotating stars

it is starting to help us characterise such stars

ongoing developments which should make TOP easier to use, thus
facilitating new discoveries

Daniel Roy Reese Two-dimensional Oscillation Program (TOP)
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