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Introduction

● AIMS = Asteroseismic Inferences on a Massive Scale

– goal: obtain probability distribution functions (PDFs) for 
stellar properties, from a set of classic (Teff, log g, 
[M/H]) and seismic constraints

● SPInS = Stellar Parameters INferred Systematically

– basically the same as AIMS without the seismic 
constraints

– can be seen as a spin-off of AIMS



  

AIMS website

https://gitlab.com/sasp/aims



  

SPInS website

https://gitlab.obspm.fr/dreese/spins



  

Some history – AIMS

● 2015: initial version written during my postdoc in Birmingham

– written in python in order to make it easier for others to contribute to 
the code

● 2016: tutorial on AIMS with Mikkel Lund

– various parts of the code are translated to Fortran to speed up 
calculations

● 2019: publication of Rendle et al. (2019, MNRAS 484, 771)

● 2021: inclusion of age parameter (in addition to physical age)

● 2019, 2022: inclusion of seismic indicators based on WhoSGlAd 
method (Farnir et al. 2019)

– method based on Gram-Schmidt orthogonalisation



  

AIMS – contributors

● Daniel R. Reese

● Andrea Miglio

● Benoît D. C. P. Herbert

● Ben Rendle

● Gael Buldgen

● Guy R. Davies

● Martin Farnir

● Martin W. Long

● Mikkel N. Lund

● Tiago L. Campante



  

Some history – SPInS

● 2018: initial version written for the 5th International Young Astronomer's 
School (Paris)

– derived from AIMS
– included a physical age and an age parameter from the start

● 2020:

– official release
– improved treatment of age
– possibility of handling multiple systems
– publication of Lebreton & Reese (2020, A&A 642, 88)

● Main contributors: Daniel R. Reese & Yveline Lebreton
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Observational constraints

● classic constraints (typically Gaussians)

– may apply elementary functions (e.g. log)
– may also specify other distributions (uniform, truncated gaussian)

● seismic constraints (AIMS only)

– individual frequencies with ℓ and with or without n
– error distributions are assumed to be Gaussian and independant
– frequency combinations (e.g. separations/ratios) are calculated subsequently and 

correlations are calculated analytically



  

Grid of models

● made of evolutionary tracks characterised by a set of parameter (e.g. 
M, X, Y)
– model parameters read from list file by AIMS/SPInS
– AIMS/SPInS will reconstruct the evolutionary tracks

– for AIMS only: model frequencies stored in individual files (their 
paths are specified in the list file)

● a first run is necessary to generate a binary grid file with all of the 
models parameters, frequencies, and grid tessellation (see interp.)
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A Bayesian approach

MAP / MLE / min χ²



  

A Bayesian approach

P(model∣data )∝P (data∣model)⏟
Likelihood function

P(model)⏟
Prior

● Bayes' theorem:

● Priors: initial mass function (IMF), metallicity
distribution function (MDF), star formation rate
(SFR)

● Likelihood function: observational constraints



  

The MCMC algorithm

● MCMC = Monte Carlo Markov Chain

● one approach: Metropolis-Hastings algorithm

– explores the model parameter space so as to
● spend little time in unlikely regions
● spend a lot of time in likely regions
● the distribution of explored points corresponds to 
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The MCMC algorithm



  

Model interpolation

● two parts

– age interpolation
– track interpolation



  

Age interpolation

● AIMS/SPInS uses 2 age parameters:

– the physical age, t
– the equivalent age parameter, τ (corresponds to evolutionary stage)

● MCMC according to age, t

– this avoids introducing unwanted priors on age
– components of multiple systems typically have the same physical 

age
● interpolation according to τ

– this enables combining models at equivalent evolutionary stages 
when interpolating across tracks



  

Age interpolation

● AIMS/SPInS is constantly going back and forth between t and τ

– need for efficient algorithm



  

Track interpolation

● apply a Delaunay tessellation



  

Track interpolation

● calculate linear integration weights within selected simplex



  

Frequency interpolation (AIMS only)

● non-dimensional frequencies are interpolated along tracks



  

Accuracy of the interpolation

● internal tests may be applied to analyse interpolation 
accuracy
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Some results with AIMS

Solutions obtained with AIMS for Kepler LEGACY stars (Lund et al. 2017,
Silva Aguirre 2017) – solutions are sometimes multimodal



  

Some results with SPInS

Results for some artificial stars



  

Some results with SPInS

Best fitting isochrone obtained with 92 stars from the Hyades cluster



  

Conclusion & perspectives

● AIMS and SPInS are helping to characterise stars and improve our 
understanding of various effects, e.g.:

– AIMS: internal systematic effects and surface effects (Nsamba et 
al. 2018)

– SPInS starting to be used extensively for the FLAME work package 
for Gaia and various other groups

● future improvements

– automatic stopping criterion for the MCMC sampler
– possibility of isolating separate modes in multimodal solutions
– extend AIMS to handle multiple systems
– extend AIMS to handle rotating stars


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

