

Impact on circularization and synchronization in open clusters

Giovanni Mirouh Universidad de Granada gmm@ugr.es

Atelier codes stellaires – June 24th, 2022

Binary-star evolution : interactions

For binary systems you need → a model of star 1 → a model of star 2 → orbit and interactions between stars

Close detached binaries :
→ tides dissipating energy
→ orbit circularization
→ spin synchronization

Izzard et al. (2012)

Tidal circularization in clusters

Tides circularize orbits : in a population of originally-eccentric systems

close systems become circular → cutoff period

cutoff period increases with age \rightarrow provides an **age estimate** for the cluster

Witte & Savonije (2002)

3

The two kinds of tides

Rieutord & Valdettaro (2010)

The dynamical tide

modes at core/envelope boundaries \rightarrow shear layer in envelope \rightarrow dissipationZahn (1977)

In stars with convective core + radiative envelope

The equilibrium tide

Pull from companion

- \rightarrow large-scale flows
- → **dissipation** through friction

In stars with a **convective surface** 4

Modelling cluster populations

Stellar population synthesis requires many stellar models, about I million stellar systems

We need

- \rightarrow adequate **initial conditions** for stars and orbits
- \rightarrow a **rapid** evolution algorithm
- \rightarrow a prescription for **tides**

We compute stellar populations using the binary_c code (**open source**) to model open clusters

https://gitlab.surrey.ac.uk/ri0005/binary_c/

Populations : initial distributions

We use two sets of initial distributions :

→ Kroupa (2001) IMF

+ Gaussian eccentricities and periods Duquennoy & Mayor (1991) \rightarrow **DM91**

or

→ Kroupa (2001) IMF
 + empirical distributions from bias-corrected obs for
 eccentricities and periods
 Moe & di Stefano (2017)
 → MSI7

Populations : rapid algorithm

Binary_c can rely on one of two algorithms

BSE Binary-star evolution Hurley et al. (2000, 2002)
→ fitting formulae derived from "old" models
→ widespread and simple
→ outdated and based on imposed physics

MINTMulti-object INTerpolationMirouh et al., in prep. \rightarrow based on grids of MESA modelsPaxton et al. (2019) \rightarrow still under developmentPaxton et al. (2019) \rightarrow modular, bespoke physicsPaxton et al. (2019)

Populations : rapid algorithm

MINT introduces various improvements wrt BSE

- \rightarrow more physical clocks for stellar evolution
- \rightarrow updated tides
- \rightarrow wider parameter range

Solar-like star cluster : M35

Initial distributions \rightarrow Gaussians (DM91) vs. empirical (MS17)

Solar-like star cluster : M35

Equilibrium tides → MINT vs. BSE

O-star cluster : Tarantula

Dynamical tides \rightarrow MINT vs. BSE Initial distributions \rightarrow DM91 vs. MS17

Statistical agreement obs-model

Test for statistical match:

- I) bootstrap two samples from model population
- 2) measure distance to each other and with obs through a 2D KS test
- 3) repeat 1000 times, compute mean and standard deviation

No difference between **MINT** and **BSE** tides with MSI7?

Modulating tides

Initial distributions dominate the agreement even when considering circularizing systems only and even when modulating tides by a factor 0-1000 !

→ Circularisation and the study of e-logP distributions cannot offer constraints on tidal efficiency

Tidal synchronization in clusters

Tides synchronize stellar spins with the orbital period

Starting from various **initial rotation prescriptions** → we test DM91 v. MS17 parameters → we test **BSE** v. **MINT** tides

Observational constraints are rare :

 → require simultaneous measurements of spins, orbits and stellar parameters
 → this is a proof-of-concept

Solar-like star cluster : M35

More efficient synchronisation with MINT equilibrium tides

15

O-star cluster : Tarantula

Less efficient synchronisation with MINT dynamical tides

Rotation rate as an age indicator

We monitor the fraction of close systems $\log(P/d) < 1.5$ at synchronicity $|\log(\Omega/\Omega_{sync})| < 0.2$

The expected behaviour for tides is significantly recovered → synchronicity = measurable signature of tide efficiency

Conclusions

Impact of tides on **circularization and synchronization** in 7 open clusters

I) MS tides are inefficient on circularization
 → circularization happens on pre-MS or post-MS

2) signature of MS tides can be found on stellar spins
 → synchronization can provide age estimates

All these results \rightarrow to appear in MNRAS, Mirouh et al. 2022

Applications galore

→ e.g. Pop III stars Gessey-Jones et al. subm., Sartorio et al. in prep.

 \rightarrow your idea goes here

