## PDF Lagrangian models of turbulence for the modelling of convection/oscillation coupling

Jordan Philidet (sur l'aimable invitation de Kevin Belkacem)





- Coupling near surface because
  - coincidence time scales

 $\tau_{\rm turb} \sim \tau_{\rm th} \sim \Pi \sim 5 \text{ minutes}$ 

- coincidence spatial scales  $\lambda \sim l_{\rm conv} \sim 1~{\rm Mm}$
- Good news: seismic observables can be used to constrain turbulent convection
- Bad news: theoretical modelling is very complicated

- Today: done with MLT, Reynolds-stress models. Also valuable insight from simulations
- But not ideal: full effect of turbulent cascade can't be included → turbulent dissipation?

- Core idea  $\rightarrow$  represent turbulent flow with set of individual fluid parcels
- Turbulent flow → particle evolution follows stochastic differential equations



- $\omega_1$  = turbulent frequency  $\rightarrow$  inverse of turbulent energy decay rate •  $C_0 = \text{Kolmogorov constant} \rightarrow \text{universal value}$
- $G_{ii} = drift tensor \rightarrow given by equivalent$ Réynolds-stress model

• Simple model

$$\begin{split} \mathrm{d}X_{i}^{\star} &= U_{i}^{\star}\mathrm{d}t \\ \mathrm{d}U_{i}^{\star} &= -\frac{1}{\overline{\rho}}\frac{\partial\overline{p}}{\partial x_{i}}\mathrm{d}t + g_{i} + G_{ij}(U_{j}^{\star} - \widetilde{U_{j}})\mathrm{d}t + \sqrt{C_{0}\widetilde{u_{i}^{\prime\prime}u_{i}^{\prime\prime}}\omega_{t}}\mathrm{d}W_{i} \\ \end{split}$$

$$\begin{split} \mathsf{Mean \ pressure \ force + }_{gravity} & \mathsf{Fluctuating \ pressure \ force + }_{buoyancy + \ turbulent \ dissipation} \end{split}$$

But: necessary to evaluate the mean fields at the particle position

Pope (1983)

## How to estimate the mean fields ?

Kernel W(r,h)

In general, extraction from DNS/LES

Here, impossible because

- we need
- that would decouple oscillations and turbulence

**Solution:** estimation directly from fluid parcels  $\rightarrow$ 

$$\langle Q(\boldsymbol{x},t) \rangle_{N,h} \equiv \frac{V}{N} \sum_{i=1}^{N} W \left[ \boldsymbol{x}^{(i)}(t) - \boldsymbol{x}, h \right] Q \left( \boldsymbol{U}^{(i)} \right)$$

Example for density

$$\overline{\rho}(\boldsymbol{x},t) = \frac{V}{N} \sum_{i=1}^{N} W\left[\boldsymbol{x}^{(i)}(t) - \boldsymbol{x}, h\right]$$

Credits: Yi et al. (2017)





Deterministic propagation  $\rightarrow$  p-modes without turbulence

Stochastic perturbation of wave propagation  $\rightarrow$  damping + surface effects

Stochastic inhomogeneous term  $\rightarrow$  driving

Philidet et al. (2021)

Expansion over normal modes:

$$|z(t)\rangle = \sum_{i} A_{i}(t) \exp^{j(\omega_{i}t + \Phi_{i}(t))} |z_{i}\rangle$$

Unperturbed eigenfunction Perturbed mode amplitude Perturbed mode phase

Time-dependent perturbation  $\rightarrow$  linear coupling between modes But for now, let us focus on single mode case Stochastic perturbation has memory

 $\rightarrow$  effect on mean amplitude and mean phase must be accounted for  $\rightarrow$  simplified amplitude equation formalism (Stratonovitch 1965, Buchler et al. 1993)

$$dA = \left(A(\kappa + \operatorname{Re}(\alpha_3)) + \underbrace{\operatorname{Re}(\alpha_1)}{2A}\right) dt + \left(A^2 \left(2\alpha_2^R + \operatorname{Re}(\alpha_3)\right) + \operatorname{Re}(\alpha_1)\right)^{1/2} dW_A$$
$$d\Phi = \operatorname{Im}(\alpha_3) dt + \left(\frac{1}{A^2}\operatorname{Re}(\alpha_1) + 2\alpha_2^I + \operatorname{Re}(\alpha_3)\right)^{1/2} dW_\Phi$$

Philidet et al. (2022)

surface effects

Physics contained in complex  $\alpha_i \rightarrow$  autocorrelation spectrum of stochastic perturbation

Mean energy  $E_m = \langle A^2 \rangle$  and mean phase  $\Phi_{\rm m} = \langle \Phi \rangle$ 

$$\frac{\mathrm{d}E_m}{\mathrm{d}t} = -2\eta E_m + \mathcal{P} \qquad \begin{array}{l} \text{Damping rate} \\ \text{Excitation rate} \\ \frac{\mathrm{d}\Phi_m}{\mathrm{d}t} = \delta\omega \\ \end{array}$$
Modal surface

$$\begin{split} \mathcal{P} &= \frac{1}{2\mathcal{I}} \int \mathrm{d}^{3}\mathbf{X} \; \rho_{0}^{2} k_{j} k_{l} \mathrm{Re} \left( \xi_{\mathrm{osc},i} \xi_{\mathrm{osc},k}^{\star} \phi_{ijkl}^{(4b)}(\mathbf{k},\omega) \right) \quad \begin{aligned} & \text{Depends on equilibrium structure } + \text{ mode structure} \\ & \text{Depends on spectrum of turbulent fields} \end{aligned}$$

$$\eta &= -\frac{1}{4\mathcal{I}^{2}} \int \mathrm{d}^{3}\mathbf{X} \; \rho_{0}^{2} \mathrm{Re} \left( F_{i}^{(1)} F_{j}^{(1)\star} \phi_{ij}^{(2)}(2\mathbf{k}, 2\omega) + F_{ij}^{(2)} F_{kl}^{(2)\star} \phi_{ijkl}^{(4b)}(2\mathbf{k}, 2\omega) + F_{ijm}^{(3a)} F_{kln}^{(3a)\star} \phi_{ijklmn}^{(4c)}(2\mathbf{k}, 2\omega) \right. \\ & \left. + 2F_{i}^{(1)} F_{jkl}^{(3b)\star} \phi_{ijkl}^{(4a)}(2\mathbf{k}, 2\omega) + 2F_{ijm}^{(3a)} F_{kl}^{(2)\star} \phi_{ijklm}^{(4d)}(2\mathbf{k}, 2\omega) \right) \right] \\ \delta\omega &= \frac{1}{4\mathcal{T}^{2}} \int \mathrm{d}^{3}\mathbf{X} \; \rho_{0}^{2} \mathrm{Im} \left( F_{i}^{(1)} F_{j}^{(1)\star} \phi_{ij}^{(2)}(2\mathbf{k}, 2\omega) + F_{ij}^{(2)} F_{kl}^{(2)\star} \phi_{ijkl}^{(4b)}(2\mathbf{k}, 2\omega) + F_{ijm}^{(3a)} F_{kln}^{(3a)\star} \phi_{ijklmn}^{(4c)}(2\mathbf{k}, 2\omega) \right) \end{split}$$

Example turbulent spectra  $\phi_{ij}^{2}(\mathbf{k},\omega) \equiv \int_{-\infty}^{0} \mathrm{d}\tau \int \mathrm{d}^{3}\delta \mathbf{x} \left\langle u_{t,i}\left(\mathbf{X},t\right) \ u_{t,j}\left(\mathbf{X}+\delta \mathbf{x},t+\tau\right)\right\rangle \exp^{j\left(\mathbf{k}.\delta \mathbf{x}+\omega\tau\right)}$ 

- Consistent with known expression of excitation rate (e.g Samadi & Goupil 2001)
- Damping rate and modal surface effects are real and imaginary part of same complex quantity
- Allows for the injection of any prescription for turbulent velocity spectrum

That was for very simple Lagrangian model: for more complete model, need to go numerical

- Very simple to implement: no spatial grid or scheme needed
- Time scheme adapted to stochastic nature of equations Output of simulation = kernel averages computed from set of particles •

## For the moment, 1D implementation: test theoretical formalism



2D and 3D implementations are under way. Investigation of:

- Coupling with gravity waves
  Lagrangian formalism → perfectly adapted to Lagrangian tracers → transport (chemical, angular momentum, ...)

Still very much pending though

## Danke sehr!!