

Impacts of central mixing and nuclear reactions network on the size of convective cores

Anthony Noll & Sébastien Deheuvels

June 2022

Convective cores in low-mass stars

- \blacktriangleright Found in the center of stars $M\gtrsim 1.2~M_{\odot}$
- Limits classically defined by the Schwarzschild [Ledoux] criterion:

$$abla_{
m rad} >
abla_{
m ad} \left[+ rac{\phi}{\delta}
abla_{\mu}
ight]$$

Convective cores in low-mass stars

- \blacktriangleright Found in the center of stars $M\gtrsim 1.2\,M_\odot$
- Limits classically defined by the Schwarzschild [Ledoux] criterion:

$$abla_{
m rad} >
abla_{
m ad} \left[+ rac{\phi}{\delta}
abla_{\mu}
ight]$$

- Local criteria, one dimensional...
- Cores are actually bigger than their Schwarzschild limit, due to:
 - Overshooting
 - Rotation mixing
 - Semi-convection

The question of the size of convective cores

- Artifical core extent in stellar evolution codes:
 - "Step" overshooting: $d_{ov} = \alpha_{ov} H_p$
 - Diffusive overshooting: $D_{ov} = D_{conv} \exp \left[-\frac{2(r-R_{cc})}{f_{ov}H_{p}}\right]$

The question of the size of convective cores

- Artifical core extent in stellar evolution codes:
 - "Step" overshooting: $d_{ov} = \alpha_{ov} H_{\rho}$
 - ► Diffusive overshooting: $D_{ov} = D_{conv} \exp \left[-\frac{2(r-R_{cc})}{f_{ov}H_{o}}\right]$
- Observation constraints through:
 - Cluster color-magnitude diagrams (e.g., Maeder+ 81)
 - Binary stars modeling (e.g., Claret+ 2018)
 - Asteroseismology (e.g., Silva-Aguirre+ 2011, Deheuvels+ 2016, Noll+ 2021)

25

- All those methods rely on stellar evolution codes...
- ... which make assumptions on physical processes in the core, especially:
 - Nuclear reactions
 - Central convective mixing
- What are the impacts of such assumptions on the size of convective cores?
- Does it have an impact on the parameters retrieved through seismic modeling of MS stars?

Nuclear Reactions

Characteristics

- Provides energy during the MS, ppchain and CNO cycle
- ▶ For $\lesssim 1.5 M_{\odot}$, pp-chain produces most of the energy

Usual assumptions

- Assume equilibrium of lithium, beryllium and deuterium
 - ▶ NOM_NUC = 'ppcno9'
- Take into account all reactions
 - NOM_NUC = 'ppcno12'

Figure 3: pp-chain and share of total energy production for a $1.5\,M_{\odot}$ star during the MS

Convective mixing

Features

- Elements are mixed by fluid movement
- ▶ Very efficient mixing (timescale ≪ evolution timescale)

Usual assumptions

- Instant mixing (all elements are homogeneous, e.g. non-diffusive CESTAM) ou
- Diffusive mixing:
 - MESA: diffusion coefficent computed with MLT
 - ► CESTAM with micro. diffu.: high *ad-hoc* coefficent (10¹³ cm².s⁻¹)

Typical timescales

Convective mixing

Convective turn-over timescale

$$au_{
m conv} = \int_0^{R_{cc}} {{\rm d}r\over v_{
m conv}} \sim 30\,{
m days}$$

Nuclear reactions

Time for the element to reach equilibrium

$$\tau_i = -n_i \left(\frac{\mathrm{d}n_i}{\mathrm{d}t}\right)_{\mathrm{nucl}}^{-1}$$

Element	au
³ He	$2.84 imes10^4$ yr
$^{7}\mathrm{Be}$	108 days
7_{Li}	178 s
⁸ B	1.11 s
$^{2}\mathrm{H}$	0.889 s

Table 1: Nuclear timescales for a $1.5 M_{\odot}$

Comparisons between the two timescales

If $\tau_{\rm nucl} < \tau_{\rm conv}$

- Elements have time to reach their equilibrium abundance
- ► Non-homogeneous in the core
- \blacktriangleright Case of $^7\mathrm{Li}, ^8\mathrm{B}, ^2\mathrm{H}$

Comparisons between the two timescales

If $\tau_{\rm nucl} < \tau_{\rm conv}$

- Elements have time to reach their equilibrium abundance
- ► Non-homogeneous in the core
- $\blacktriangleright\,$ Case of $^7\mathrm{Li}, ^8\mathrm{B}, ^2\mathrm{H}\,$

If $\tau_{\rm nucl} > \tau_{\rm conv}$

- Elements are efficiently mixed by convection
- Homogeneous in the core
- \blacktriangleright Case of $^{1}\mathrm{H}, ^{3}\mathrm{He}, ^{4}\mathrm{He}, ^{7}\mathrm{Be}$

What if we assume instant mixing?

- All elements are homogeneous
- \blacktriangleright Not correct for $^7\mathrm{Li}, ^8\mathrm{B}, ^2\mathrm{H}$

Figure 4: Lithium mass fraction in the core

How does this impact the stellar structure?

▶ ⁷Li involved in:

$$^{7}\mathrm{Be} + e^{-} \rightarrow ^{7}\mathrm{Li} + \nu$$
$$^{7}\mathrm{Li} + ^{1}\mathrm{H} \rightarrow 2^{4}\mathrm{He}$$

The composition impacts the energy production:

$$\epsilon_{
m pp2}\sim X_{^7
m Li}X_{^7
m Be}\langle\sigma v
angle$$

▶ For stars $< 1.5 M_{\odot}$, they represent $\sim 20\%$ of the total energy production ▶ The energy production impacts the luminosity profile : $L = \partial \epsilon / \partial m$

Impact on the central radiative gradient

The luminosity profile impacts the radiative gradient

$$abla_{
m rad} \propto rac{\kappa L P}{m T^4}$$

This is indeed verified in the models

Figure 5: $\nabla_{\rm rad}$ in MESA (diffusive) and CESTAM (instant) models

Impact of the mixing on the core structure with no overshoot

No difference for models without overshoot...

Impact of the mixing on the core structure with overshooting

but strong differences when overshoot is included!

What if we use a simple nuclear network?

- $\blacktriangleright~^7\mathrm{Li}, ^7\mathrm{Be}$ and $^8\mathrm{B}$ at the equilibrium
- ▶ Not the case for ⁷Be!
- Erroneous composition profile

Figure 6: Beryllium mass fraction both at equilibrium and with full network

What impact on the stellar structure?

▶ ⁷Be involved in:

$$^{7}\mathrm{Be} + e^{-} \rightarrow ^{7}\mathrm{Li} + \nu$$

▶ Very low energy production, but then X_{7Be} impacts X_{7Li} as ⁷Li is at equilibrium:

$$X_{^{7}\mathrm{Li,eq}} = rac{r_{1}n_{e}}{r_{2}X_{^{1}\mathrm{H}}} X_{^{7}\mathrm{Be}}$$

 $\blacktriangleright\,$ Same impact as the mixing on $\nabla_{\rm rad}$

Figure 7: $\nabla_{\rm rad}$ for a model with a basic and full nuclear network

What impact on convective cores?

Similar core mass differences within models with overshoot

Directly observed in models!

Figure 8: Hydrogen profiles for every evolution step after adding overshooting

What stars are the most sensitive to this?

From the toy-model, we can find that:

$$\Delta r_s
ightarrow d_{
m ov} \left(rac{a'}{a}-1
ight)$$

What stars are the most sensitive to this?

From the toy-model, we can find that:

$$\Delta r_{s}
ightarrow d_{
m ov} \left(rac{a'}{a}-1
ight)$$

 $\blacktriangleright \frac{a'}{a}$: depends on the % of pp2, so depends on mass and evolution

Figure 9: Evolution of the pp2 part for a 1.2, 1.5 and 1.8 M_{\odot}

19/25

What stars are the most sensitive to this?

From the toy-model, we can find that:

$$\Delta r_{s}
ightarrow d_{
m ov} \left(rac{a'}{a}-1
ight)$$

\$\frac{a'}{a}\$: depends on the % of pp2, so depends on mass and evolution
 \$d_{ov}\$: depends on the mass

Figure 9: Evolution of the pp2 part for a 1.2, 1.5 and 1.8 M_{\odot}

19/25

Solar like-oscillators

- ▶ Low-mass stars (between 1.15 and 1.5 M_{\odot}): solar-like oscillators
- Exhibit numerous p-modes, stochastically excited by the convective envelope
- Low-amplitude, but good quality data from the Kepler satellite

Figure 10: PSD of KIC6225718 from Lund+ 2017

Impact on seismic modeling

 Solar-like oscillators exhibit p-modes, highly sensitive to the near-surface regions of the star

Impact on seismic modeling

- Solar-like oscillators exhibit p-modes, highly sensitive to the near-surface regions of the star
- ▶ Use of *r*₀₁ ratios:
 - Less sensitive to surface effects (Roxburgh & Vorontsov 2003)

Impact on seismic modeling

- Solar-like oscillators exhibit p-modes, highly sensitive to the near-surface regions of the star
- Use of r₀₁ ratios:
 - Less sensitive to surface effects (Roxburgh & Vorontsov 2003)
- Use of coefficients a₀, a₁, a₂ of 2nd degree polynome fit as seismic observables (Popielski+ 2005, Deheuvels+ 2016)

Impact on the seismic modeling

- ▶ Comparisons with MESA (Paxton+ 2011) and ADIPLS (JCD 2008) models
 - $\blacktriangleright\,$ Basic networks, assuming $^7{\rm Li}$ and $^7{\rm Be}$ at the equilibrium
 - Full networks
- Grid computed by varying *M*, Z/X, Y_0 and α_{ov}

25

Impact on the retrieved parameters

- \blacktriangleright Significant difference in the retrieved α_{ov} parameter
- No significant difference for the others parameters
- Results for KIC6225718:

$M(M_{\odot})$	1.2780 ± 0.029
$R~(R_{\odot})$	1.2736 ± 0.012
Age (Gyr)	1.6522 ± 0.38
[Z/X] (dex)	0.1595 ± 0.069
Y_0	0.2611 ± 0.017
$lpha_{ m ov}$	0.2013 ± 0.032

Table 2: Parameters for basic network

$M(M_{\odot})$	1.2764 ± 0.029
$R~(R_{\odot})$	1.2733 ± 0.010
Age (Gyr)	1.7333 ± 0.33
[Z/X] (dex)	0.1436 ± 0.060
Y_0	0.2565 ± 0.015
$lpha_{ m ov}$	0.2836 ± 0.035

Table 3: Parameters for total network

Impact on the mass/overshoot relation

- \blacktriangleright Use of stars in the LEGACY (Lund+ 2017) sample with $M\gtrsim 1.15~M_{\odot}$
- No impact on the trend
- High values of $\alpha_{\rm ov}$ in low-mass models with full network

Conclusion

In order to have a self-consistent determination of convective core boundaries:

- The mixing must not be taken as instantaneous
- Full reactions network must be taken into account
- Else...
 - $\blacktriangleright\,$ Wrong $^7{\rm Li}$ and $^7{\rm Be}$ abundances in low-mass stars convective cores
 - Bigger cores in models with overshooting
- \blacktriangleright Impact on the $\alpha_{\rm ov}$ value retrieved with MS stars seismic modeling
- Apparently no impact on the other parameters