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Convective cores in low-mass stars

» Found in the center of stars M = 1.2 M

» Limits classically defined by the Schwarzschild [Ledoux] criterion:
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Convective cores in low-mass stars

» Found in the center of stars M = 1.2 M

» Limits classically defined by the Schwarzschild [Ledoux] criterion:
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» Local criteria, one dimensional...
» Cores are actually bigger than their Schwarzschild limit, due to:

» Overshooting
» Rotation mixing
» Semi-convection



The question of the size of convective cores

» Artifical core extent in stellar evolution codes:
> “Step” overshooting: doy = oy Hp
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» Diffusive overshooting: Dy, = Deony €Xp [—



The question of the size of convective cores
> Artifical core extent in stellar evolution codes:

> “Step” overshooting: doy = oy Hp

ov/lip

2(r—RCC)}

» Diffusive overshooting: Dy, = Deony €Xp [—

» Observation constraints through:
» Cluster color-magnitude diagrams (e.g., Maeder+ 81)
» Binary stars modeling (e.g., Claret+ 2018)
> Asteroseismology (e.g., Silva-Aguirre+ 2011, Deheuvels+ 2016, Noll+ 2021)
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Figure 1: From Claret+ 2018 Figure 2: From Deheuvels+ 2016



However...

» All those methods rely on stellar evolution codes. ..

» ... which make assumptions on physical processes in the core, especially:

» Nuclear reactions
» Central convective mixing

» What are the impacts of such assumptions on the size of convective cores?

» Does it have an impact on the parameters retrieved through seismic modeling of
MS stars?



Nuclear Reactions

Characteristics
» Provides energy during the MS, pp-
chain and CNO cycle
» For < 1.5Mpg,
most of the energy

pp-chain produces

Usual assumptions
» Assume equilibrium of lithium, beryl-
lium and deuterium
> NOM_NUC = ’ppcno9’
» Take into account all reactions
> NOM_NUC = ’ppcnol2’
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Figure 3: pp-chain and share of total energy
production for a 1.5 M, star during the MS



Convective mixing

Features
» Elements are mixed by fluid movement

> Very efficient mixing (timescale < evolution timescale)

Usual assumptions
» Instant mixing (all elements are homogeneous, e.g. non-diffusive CESTAM)
ou
» Diffusive mixing:
» MESA: diffusion coefficent computed with MLT
» CESTAM with micro. diffu.: high ad-hoc coefficent (1013 cm2.s~1)



Typical timescales
Convective mixing

» Convective turn-over timescale

RCC
Tconv — /
0

Nuclear reactions

» Time for the element to reach
equilibrium

<dn,->_1
Ti=—ni | —
dt nucl

dr . 30 days
Veonv

Element T
3He 2.84 x 10% yr
"Be 108 days

L 178s
8B 1.11s
2H 0.889 s

Table 1: Nuclear timescales for a 1.5 Mg



Comparisons between the two timescales

If Tauel < Tconv
» Elements have time to reach their equilibrium abundance

» Non-homogeneous in the core
» Case of 'Li, ®B,%H



Comparisons between the two timescales

If Tl < Teonv
» Elements have time to reach their equilibrium abundance
» Non-homogeneous in the core
» Case of 'Li, ®B,%H

If Toucl > Teonv
» Elements are efficiently mixed by convection
» Homogeneous in the core
» Case of 1H,3He, *He, "Be



What if we assume instant mixing?

» All elements are homogeneous
» Not correct for ’Li, 8B, °H
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Figure 4: Lithium mass fraction in the core



How does this impact the stellar structure?

» “Li involved in:

Be+e — Lit+v
Li+1H — 2%He

» The composition impacts the energy production:
epr ~ X7LiX7Be <O'V>

» For stars < 1.5 Mg, they represent ~ 20% of the total energy production
» The energy production impacts the luminosity profile : L = de/0m



Impact on the central radiative gradient

» The luminosity profile impacts the radiative gradient

kLP

vrad X

» This is indeed verified in the models
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Impact of the mixing on the core structure with no overshoot
» No difference for models without overshoot. . .
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Impact of the mixing on the core structure with overshooting

> ... but strong differences when overshoot is included!
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What if we use a simple nuclear network?
» 7Li, "Be and ®B at the equilibrium
» Not the case for "Bel
» Erroneous composition profile
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Figure 6: Beryllium mass fraction both at equilibrium and with full network



What impact on the stellar structure?
» "Be involved in:

Be+e — Lit+v
» Very low energy production, but then X7, impacts Xr; as ’Li is at equilibrium:
X7Li,eq = v

» Same impact as the mixing on V.4
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Figure 7: V,aq for a model with a
basic and full nuclear network
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What impact on convective cores?

» Similar core mass differences within models with overshoot
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Why this only appears with overshooting?
> Toy model to understand what's happening:

(Reo=(Rec)o
v'r'a\d
vrad
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Why this only appears with overshooting?
» Toy model to understand what’s happening:
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Why this only appears with overshooting?
» Toy model to understand what’s happening:
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Why this only appears with overshooting?
» Toy model to understand what's happening:

(Re)o=(Rec)o (Ri)i=(Re)1 (Ri):  (Re)s (Reo)

Vo o=

ad




Why this only appears with overshooting?

» Directly observed in models!
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Figure 8: Hydrogen profiles for every evolution step after adding overshooting



What stars are the most sensitive to this?

» From the toy-model, we can find that:

a/

Ars — dyy < -1
a



What stars are the most sensitive to this?

» From the toy-model, we can find that:

/
Ar, = dyy <a _ 1>
a

v
v

a’: depends on the % of pp2, so depends on mass and evolution

Figure 9: Evolution of the pp2 part
fora 1.2,1.5 and 1.8 Mg
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What stars are the most sensitive to this?

» From the toy-model, we can find that:

/
Ar, = dyy <a _ 1>
a

> Z: depends on the % of pp2, so depends on mass and evolution
>

a
doy: depends on the mass
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Figure 9: Evolution of the pp2 part
fora 1.2,1.5 and 1.8 Mg
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Solar like-oscillators

» Low-mass stars (between 1.15 and 1.5 Mg): solar-like oscillators
» Exhibit numerous p-modes, stochastically excited by the convective envelope

> Low-amplitude, but good quality data from the Kepler satellite
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Figure 10: PSD of KIC6225718 from Lund+ 2017



Impact on seismic modeling

» Solar-like oscillators exhibit p-modes, highly sensitive to the near-surface regions
of the star
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» Use of ryy ratios:
» Less sensitive to surface effects (Roxburgh & Vorontsov 2003)



Impact on seismic modeling

» Solar-like oscillators exhibit p-modes, highly sensitive to the near-surface regions
of the star

» Use of ryy ratios:
» Less sensitive to surface effects (Roxburgh & Vorontsov 2003)

» Use of coefficients ag, a;, a» of 2nd degree polynome fit as seismic observables
(Popielski+ 2005, Deheuvels+ 2016)
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Impact on the seismic modeling

» Comparisons with MESA (Paxton+ 2011) and ADIPLS (JCD 2008) models

» Basic networks, assuming ‘Li and "Be at the equilibrium
» Full networks

» Grid computed by varying M, Z/X, Yy and agy
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Figure 12: Basic network
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Impact on the retrieved parameters

» Significant difference in the retrieved oy, parameter
» No significant difference for the others parameters
> Results for KIC6225718:

M (My) 1.2780 = 0.029 M (Mo) 1.2764 =+ 0.029
R (Rs) 1.2736 + 0.012 R (Rs) 1.2733 + 0.010
Age (Gyr) 1.6522 +0.38 Age (Gyr) 1.7333 £ 0.33
[Z/X] (dex) 0.1595 = 0.069 [Z/X] (dex) 0.1436 % 0.060
Yo 0.2611 £+ 0.017 Yo 0.2565 + 0.015
Qoy 0.2013 +0.032 Qoy 0.2836 + 0.035

Table 2: Parameters for basic network Table 3: Parameters for total network



Impact on the mass/overshoot relation

» Use of stars in the LEGACY (Lund+ 2017) sample with M 2> 1.15 Mg,
> No impact on the trend

» High values of ay in low-mass models with full network
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Figure 14: Basic network Figure 15: Full network




Conclusion

» In order to have a self-consistent determination of convective core boundaries:

» The mixing must not be taken as instantaneous
» Full reactions network must be taken into account

> Else. ..

» Wrong "Li and “Be abundances in low-mass stars convective cores
» Bigger cores in models with overshooting

» Impact on the ay, value retrieved with MS stars seismic modeling

> Apparently no impact on the other parameters



