3D Time-dependent convection model for asteroseismology

University of Liège

LIZIN Stéphane

Asteroseismology and Surface effect

- Current pulsation and structure models
 - Mainly adiabatic approximation
 - 1D models
- Drift from observations (solar-like)
 - High frequencies

Asteroseismology and Surface effect

- Current pulsation and structure models
 - Mainly adiabatic approximation
 - 1D models
- Drift from observations (solar-like)
 - High frequencies
- Surface effects
 - Inaccurate representation of superficial layer
 - Interaction: Turbulence & Oscillations
 - Currently still an issue

Turbulence Challenges

Structure

- Very difficult to model
 - Large spectrum of space and time-scales
 - Stellar to centimeter
 - Extremely turbulent flow
 - $\blacksquare \quad \text{Re} \sim 10^{10}$
- Large Eddy Simulations

Modal effect

- Superficial layer
 - $\circ ~~ \tau_{\rm th} \sim {\rm P} \sim \tau_{\rm conv}$
 - Highly non-adiabatic
 - System of coupled equations
 - Dynamical
 - I Thermal
 - Convective zone ($M_{\star} \leq 1.5 M_{\odot}$)
- Coupling: Convection & Oscillation

Turbulence Challenges

- Our approach
 - 3D space
 - 3D hydrodynamic simulation
 - Perturbative approach
 - Applied to 3D medium

→ 3D Hydrodynamic simulation: CO⁵BOLD

- Target: Sun
- Grid nodes: 189x189x150
- Box size: 18.5x18.5x8.4 (Mm)
- Duration: 3 min
- Time step: 5s

TDC Model

TDC model - Starting point

• Navier-Stokes equations

Continuity:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{v}) = 0$$

Momentum: $\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} = -\frac{\nabla P}{\rho} + \underline{g}$
Energy: $\rho T \frac{Ds}{Dt} = -\nabla \cdot \underline{F}$

• Radiative transport

$$\underline{F} = -\chi \nabla T$$

TDC model - Starting point

• Eulerian perturbation

Continuity:
$$\frac{\partial \rho'}{\partial t} + \nabla \cdot (\rho' \underline{v} + \rho \underline{v}') = 0$$

Momentum:
$$\frac{\partial \underline{v}'}{\partial t} + \underline{v}' \cdot \nabla \underline{v} + \underline{v} \cdot \nabla \underline{v}' = -\frac{\nabla P'}{\rho} - \nabla P \left(\frac{1}{\rho}\right)' + \underline{g}'$$

Energy:
$$\left(\frac{\rho'}{\rho} + \frac{T'}{T}\right) \left(\rho T \frac{Ds}{Dt}\right) + (\rho T) \left(\frac{Ds}{Dt}\right)' = -\nabla \cdot \underline{F}'$$

Radiation:
$$\underline{F}' = -\chi' \nabla T - \chi \nabla T'$$

TDC model - Characteristics

- 1. No horizontal averages
 - Convective flux, Reynold stress
- 2. No closing equation
 - Turbulence modelling
- 3. No approximation on the equations
 - Ad hoc prescriptions

Innovative approach in 3D

TDC model - Developments

- Oscillation mode
 - \circ Decomposition
 - Time component
 - Space component

$$A'(\underline{r},t) = a'(\underline{r}) e^{i\sigma t}$$

TDC model - Developments

- Oscillation mode
 - \circ Decomposition

■ Space component

$$A'(\underline{r},t) = a'(\underline{r}) e^{i\sigma t}$$

• Fourier transform at the oscillation frequency

$$\frac{1}{\Delta t} \int_{t} A'(\underline{r},t) B(\underline{r},t) \mathrm{e}^{-i\,\sigma t} dt = \frac{a'(\underline{r})}{\Delta t} \int_{t} B(\underline{r},t) \mathrm{e}^{i\,\sigma t} \mathrm{e}^{-i\,\sigma t} dt = a'(\underline{r})\,\overline{B}(\underline{r})$$

TDC model - Time step

13

TDC model - Developments

- Fourier transform (2D)
 - Each horizontal plane

$$A(\underline{x}) \to A(\underline{k}) = \iint A(\underline{x}) e^{-i\underline{k}\cdot\underline{x}} dS$$

TDC model - Developments

- Fourier transform (2D)
 - Each horizontal plane

$$A(\underline{x}) \to A(\underline{k}) = \iint A(\underline{x}) e^{-i\underline{k}\cdot\underline{x}} dS$$

- Main advantage
 - Natural distinction
 - Horizontal average equation ($\underline{k}=\underline{0}$)
 - Different scales of turbulence ($\underline{k}\neq \underline{0}$)
 - $\circ \quad \nabla_{\mathbf{h}} \mathbf{x}' \Longrightarrow \quad \mathbf{i} \underline{\mathbf{k}} \ \mathbf{x}'$
 - Assess impact of different scales
 - Real space easily accessible

TDC model - Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{v}) = 0$$

$$\frac{\partial \rho'}{\partial t} + \nabla \cdot (\rho' \underline{v} + \rho \underline{v}') = 0$$

$$\lim_{\substack{\substack{ \\ i \sigma \rho' \\ i = 1 \\ k_1 \\ limbda l$$

TDC model - Hypothesis

$$i\sigma \rho_k' + \sum_{k_1} \left\{ i \underline{k} \cdot \rho_{k_1}' \underline{v}_{h,k-k_1} + i \underline{k} \cdot \rho_{k_1} \underline{v}_{h,k-k_1}' + \frac{\partial}{\partial z} \left(\rho_{k_1}' v_{z,k-k_1} + \rho_{k_1} v_{z,k-k_1}' \right) \right\} = 0$$

- Distinction based on \underline{k}
 - \circ k = 0
 - Horizontal average
 - Every term of the sum kept
 - $\circ \quad k \neq 0$
 - Turbulent fluctuations
 - Keep dominant terms
 - $\bullet \quad \| {\mathbf{x}_0}' \|, \| {\mathbf{x}_0} \| \gg \| {\mathbf{x}_k}' \|, \| {\mathbf{x}_k} \|$

 $i\sigma \rho_0' + \sum_{k_1} \left\{ \frac{\partial}{\partial z} \left(\rho_{k_1}' \, v_{z,k_1}^* + \rho_{k_1}^* \, v_{z,k_1}' \right) \right\} = 0$

$$i\sigma \rho'_{k} + i\underline{k} \cdot (\rho'_{0} \underline{v}_{h,k} + \rho_{0} \underline{v}'_{h,k} + \rho'_{k} \underline{v}_{h,0} + \rho_{k} \underline{v}'_{h,0}) \\ + \frac{\partial}{\partial z} \left(\rho'_{0} v_{z,k} + \rho_{0} v'_{z,k} + \rho'_{k} v_{z,0} + \rho_{k} v'_{z,0} \right) = 0$$

Decoupling of each k component

• Every equation is processed similarly

$$\mathcal{L}_0(x'_0,\sigma) + \mathcal{L}_1(x'_k,\sigma) = 0$$

$$\mathcal{L}_k(x'_k,\sigma) + \mathcal{L}_{k0}(x'_0,\sigma) = 0$$

Every equation is processed similarly \bullet

$$\mathcal{L}_0(x'_0,\sigma) + \mathcal{L}_1(x'_k,\sigma) = 0$$

$$\mathcal{L}_k(x'_k,\sigma) + \mathcal{L}_{k0}(x'_0,\sigma) = 0$$

k≠

- Finite difference
 - Linear operator \implies Matrix Ο
 - Eigenvalue problem Ο
- Valid for the entire star
 - Radiative zone Ο
 - k unknowns: $x_{k}' = 0$ (for $k \neq 0$)

$$\underline{\mathcal{L}_{\sigma}}\,\underline{x}' = 0$$

• Unrelaxed solution

- First iteration only
- $\circ \quad 1D \text{ code (MAD)} \Longrightarrow x_0' \Longrightarrow x_k'$
- Simple boundary conditions ($\forall k \neq 0$)
 - Stop at the photosphere

$$P'_k = 0$$

$$\delta(F_z)_k = \sigma_{SB} \,\delta(T^4)_k$$

• Inverse Fourier transform

24

3D simulation

• Work integral

$$\sigma^2 I = I_0(\overline{x'}) + I_{Re}(x' - \overline{x'}) + I_b(x' - \overline{x'})$$
$$\iiint_V R'_{ij} \partial_j v'^*_i \, dV$$

- Extraction of the damping rate
 - Imaginary part of σ^2

28

TDC model - Coming soon

• Perspective

- Improved boundary conditions
- Include atmosphere
- High-resolution simulation
- Later on
 - Obtain a relaxed solution
 - Locate region of excitation and damping

TDC model - Coming soon

• Perspective

- Improved boundary conditions
- Include atmosphere
- High-resolution simulation
- Later on
 - Obtain a relaxed solution
 - Locate region of excitation and damping
- Other application for the model
 - Solar-like oscillations
 - White Dwarfs
 - \circ γ -Doradus, ...

