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3D static models of close, synchronized binaries in 
hydrostatic equilibrium with MoBiDICT  
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Study of close binaries is tedious due to the 
breaking of the spherical symmetry of stars.

Tidal interaction, common 
envelope phases or transfert of 
masse

Binary stars: pair of stars gravitationally bounded 
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Binary stars
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Objective: compute the geometrical deformation of binary systems -> computation of 3D static 
stellar models of stars deformed by tidal and centrifugal forces

Method: solve Poisson’s equation by spectral method until convergence toward the density 
and potential in 3D (Roxburgh 2004, 2006).
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In the case of a rigid body rotation all forces are derived from a potential 
=> the problem is conservative

=> Pressure and densities are constant on the equipotential 

=> With a given chemical composition temperature are also constant on the equipotentials 

(Can be seen in the equation of hydrostatic equilibrium and its rotational )
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Initial condition of the simulation : 

Separation: 0.01213 AU
 in the MSM1 = M2 = 1 M⊙
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Increase in deformation ≃ 22 %
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Binaries of Solar type stars - Spectral potential & density
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1.0 M⊙ :
Rnew − RRoche
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Perspectives 
De-synchronization of the system

KPD 1930+2752 

Study of non synchronized systems 
with rigid body rotation 

Implementation of non aligned 
rotation axis

Two main improvements:

=> breaking of all the symmetries of the system
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Perspectives 
Coupling with stellar evolution codes

dP
dmp

= − fp
Gmp

4πr4
p

, fp =
4πr4

p

Gmp

1
∫

Ψ
g−1

eff dσ

dT
dmp

= − fT
3κLp

64π2r4
pacT3

, fT =
64π2r4

p

∫
Ψ

g−1
eff dσ ∫

Ψ
geffdσ

Couple the stellar evolution of Liege to 
MobiDICT using the method of Kippenhahn 
et al., 1970 :

First step: at the end of each evolution 
track, compute  and  and compute 
again an evolution track

fP fT
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Development of a non-perturbative 3D 
oscillation code for our new stellar models.
A new method to identify and classify the 
oscillation modes in 3D.

Ouazzani et al., 2015

Perspectives 
Stellar 3D oscillation code

Objectives:
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Inclusion of the effects produced by the radiation 
pressure using an adapted grid of atmospheric 
models.

Perspectives 
Others

Proper modelling of the phases of common enveloppe
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Summary  

We developed a new method, MoBiDICT, to compute the deformations of close, synchronized 
binaries in 3D. 

The differences in deformation with respect to the Roche model are highly 
dependent on the density profile of the stars studied

With MoBiDICT, we found a difference in deformation up to 22% compared to the Roche model 
for solar type stars in the MS.

In the future we are going to implement the desynchronization of the 
systems, the coupling of MoBiDICT to stellar evolution codes and develop a 
3D oscillation code associated with our 3D stellar models. 



Thank you for your attention !
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1
r2
i

d
dri (r2

i
dΨm

i,ℓ

dri ) −
ℓ(ℓ + 1)

r2
i

Ψm
i,ℓ = 4πGρm

i,ℓ

1. as initial parameter we take  for each star  composing the system.

2. solve Poisson's equation knowing  and we compute  for the grid of each 
star.

ρi(r, μ, ϕ) = ρi(r, μcrit, ϕcrit) = ρCLES,1D(r) i

ρi(r, μ, ϕ) Ψtot = Ψ1 + Ψ2 + Ψcentri

;    ;   ;   xi =
ri

a
Λm

i,ℓ = ρm
i,ℓ (

Mtot,sys

4πa3 )
−1

Υm
i,ℓ = Ψm

i,ℓ (
GMtot,sys

a )
−1

Ω2 = ω2 (
GMtot,sys

4π2a3 )
−1

Adimensioning of the procedure :
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3. assuming that the density of each star along the direction ( ) is density of the one-dimensional 
average input models, we can interpolate the density one each grid point taking advantage that the 
density should be constant on a given equipotential.

4. estimation of the differences  and  that we are using as convergence indicator.

5. we start back to step 2 if the model has not converged.

μcrit, ϕcrit

δρi(r, μ, ϕ) δΨi(r, μ, ϕ)
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Annexe  
Méthode : Pression de radiation

Effet de surface -> modélisation à postériori.

Couplage des modèles stellaires aux atmosphères ( lois T( , , ), atmosphères type CMFGEN )τ Teff log geff

1. Calculer le flux totale venant de 
l’étoile 2 sur un point de l’étoile 1.

2. L’équation d’équilibre hydrostatique 
devient  qu’on 
intègre grâce aux équations d’états 
et T( ).

3. On colle l’atmosphère en profondeur 
( ) en s’assurant la continuité 
de P.

1
ρ

dP
dr

= geff + κ
F21

c

τ

τ = 100


