Transport of angular momentum in 2D

L. Manchon, J. P. C. Marques, R.-M. Ouazzani

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Why study rotation?

In standard stellar evolution models, rotation is neglected. However,

- Generates a dynamo that sustains magnetic field → impact on planetary atm.;
- Induces additional transport of chemicals;
- Breaks spherical symmetry $ightarrow {f
 abla} p/
 ho
 mid {f g}$;

Current modelling of the transport of angular momentum (TAM)

- Convective zone : chemically homogeneous → no impact on the age.
- $\rightarrow~$ we focus on radiative zone : rotation \leftrightarrow turbulence, diffusion, magnetic fields, overshoot...
- 3 simplifying ideas (Zahn 92, Spiegel & Zahn 92) :
 - Turbulence-induced viscosity diffuses Ω .
 - Meridional circulation advects ${\cal J}.$
 - Shellular rotation approximation ($\nu_h \gg \nu_v)$: Ω independent of latitude.
- \Rightarrow We can keep our 1D approach : $r \rightarrow p$.

Shear-induced turbulence

Shear-induced turbulence

\Rightarrow smooths horizontal gradients ($\nu_{\rm h} \gg \nu_{\rm v}$).

\Rightarrow Shear-induced turbulence diffuses Ω .

Current modelling of the transport of angular momentum (TAM)

- Convective zone : chemically homogeneous → no impact on the age.
- $\rightarrow~$ we focus on radiative zone : rotation \leftrightarrow turbulence, diffusion, magnetic fields, overshoot...
- 3 simplifying ideas (Zahn 92, Spiegel & Zahn 92) :
 - Turbulence-induced viscosity diffuses Ω .
 - Meridional circulation advects ${\cal J}.$
 - Shellular rotation approximation ($\nu_h \gg \nu_v)$: Ω independent of latitude.

 \Rightarrow We can keep our 1D approach : $r \rightarrow p$.

Meridional circulation

Star is in baroclinic equilibrium :

 \Rightarrow Variations of Ω along the rotation axis are determined by variations of ρ along isobares **alone**.

 \Rightarrow Only way to fulfil the baroclinic equilibrium : meridional circulation.

Current modelling of the transport of angular momentum (TAM)

- Convective zone : chemically homogeneous → no impact on the age.
- $\rightarrow~$ we focus on radiative zone : rotation \leftrightarrow turbulence, diffusion, magnetic fields, overshoot...
- 3 simplifying ideas (Zahn 92, Spiegel & Zahn 92) :
 - Turbulence-induced viscosity diffuses Ω .
 - Meridional circulation advects ${\cal J}.$
 - Shellular rotation approximation ($\nu_h \gg \nu_v$) : Ω independent of latitude.

 \Rightarrow We can keep our 1D approach : $r \rightarrow p$.

Does it reproduce observations?

NO!	Observations	Models
Sun	$CZ:\partial\Omega/\partial\theta\neq 0$	$\partial \Omega / \partial \theta = 0$
	RZ: $\partial\Omega/\partial r\simeq 0$	$\partial \Omega / \partial r eq 0$
Red Giants	$\Omega_{\rm core} > \Omega_{\rm surf}$ but	$\Omega_{ m core,model}$ strongly
		overestimated

- \Rightarrow Motivates the need for additional transport mechanisms...:
 - Waves : Mixed modes (Belkacem et al., 2015ab), IGW (Kumar et al. 1999; Pinçon et al. 2016);
 - Hydro- or MHD-instabilities : GSF, ABCD, Rayleigh-Taylor ; MRI, Taylor-Spruit
- \Rightarrow ... But also require to modify standard stellar model.

We need to break spherical symmetry and go to 2D

- Rotating stars are not spherical.
- Transition RZ/CZ : Boundary condition on Ω depends on θ (obs.).
- Additional transport mechanisms :
 - Instability criteria : depend on θ .
 - AM transported by waves : depends on $\Omega(\theta)$.
- Shellular rotation may not be valid near the pole (because rotation velocity vanishes : $\nu_{\rm h} \gg \nu_{\rm v}$ not verified).

CESTAM : Code d'Évolution Stellaire, avec Transport, Adaptatif et Modulaire. (Morel 97, Morel & Lebreton 08, Marques et al. 13)

Modified structure equations

 $f_p, f_T, g_{\rm eff} \Rightarrow$ need the coordinates of isobars, ϕ, ρ on the isobars, etc...

Legendre polynomial decomposition :

$$\rho = \overline{\rho} + \sum_{\ell > 0} \widetilde{\rho}_{\ell} P_{\ell}(\cos \theta)$$

 $1 M_{\odot}$

Manchon et al. (in prep.)

 \Rightarrow We can now follow the 2D structure along evolution.

Latitudinal density gradients

criterion) $\Rightarrow d\rho/d\theta > 0$ and ρ increases from pole to equator.

Seismic validation (non-rotating case)

Does the deformation module introduce substantial numerical noise?

- Fréquences : ACOR (Ouazzani+2015).
- 1D (.osc) vs 2D (.osc2d) (bleu).

Seismic validation (non-rotating case)

- Fréquences : ACOR (Ouazzani+2015).
- 1D vs 2D (bleu) et (1D + dérivée 2D) vs 2D (vert).

Remaining gaps : glitches in the derivative of ρ at transition RZ/CZ.

Deformation with rotation - maximum order

$$\rho = \overline{\rho} + \sum_{\ell > 0}^{\ell_{\max}} \widetilde{\rho}_{\ell} P_{\ell}(\cos \theta)$$

Deformation with rotation - maximum order

$$\rho = \overline{\rho} + \sum_{\ell > 0}^{\ell_{\max}} \widetilde{\rho}_{\ell} P_{\ell}(\cos \theta)$$

Deformation with rotation - maximum order

$$\rho = \overline{\rho} + \sum_{\ell > 0}^{\ell_{\max}} \widetilde{\rho}_{\ell} P_{\ell}(\cos \theta)$$

Transport of angular momentum

Transport of angular momentum

Old vs. new prescription

Zahn 1992, Talon et al. 1997, Maeder et al. 1998

- Limited to $\ell = 2$.
- Approximation of $\mathbf{g}_{\mathrm{eff}}.$
- Depends on $\frac{\partial \tilde{\rho}_{\ell}/\bar{\rho}}{\partial r}$, $\frac{\partial \tilde{\mu}_{\ell}/\bar{\mu}}{\partial r}$.

Mathis & Zahn 2004 + deformation :

- Possible at any ℓ .
- $\mathbf{g}_{\mathrm{eff}}$ (MZ04 or Roxburgh 2006).
- Depends on $\frac{\partial \widetilde{T}_{\ell}/\bar{T}}{\partial r} \rightarrow$ Better handling of steep gradients.

$$M=2.5M_{\odot}$$
, $P_{
m disk}=4$ days.

 $\Omega\simeq 37\%\Omega_{\rm K}$

 $\Omega\simeq 49\%\Omega_{\rm K}$

Manchon et al. (in prep.)

- orange: $0.8 M_{\odot}$

dashed lines : slow rotators

– blue : $1.0 M_{\odot}$

solid lines : fast rotators

- First stellar evolution code with 2D treatment. Deformation module almost costless in terms of computation time.
- New angular momentum transport prescription : includes 2D effects (possibility to go beyond $\ell=2$); + stable and fater than code purely 1D

Perspectives :

- Framework to test additional transport mechanisms.
- Allow to improve seismic diagnostics for rotating stars.
- A code of 2ndgeneration for PLATO.

- orange : $0.8 M_{\odot}$
- blue : $1.0 M_{\odot}$

- dashed lines : slow rotators
- solid lines : fast rotators