

Atelier Codes en Physique Stellaire AIPS - PNPS, Meudon, June 29th, 2022.

Modelling waves in stellar interior with the MUSIC code

T. Guillet, I. Baraffe, A. Leclerc, D. Vlaykov, A. Morison, J. Clark (Exeter) J. Pratt (Georgia State) T. Goffrey (Warwick) V. Réville (IRAP) A. S. Brun (AIM - CEA)

Arthur Le Saux (University of Exeter -CRAL, ENS Lyon)

Acoustic waves

Intermediate-mass stars

Convective penetration and waves excitation

Impact of radial geometry

Acoustic waves

Intermediate-mass stars

Convective penetration and waves excitation

Impact of radial geometry

Solar-like reference model

Based on 1D model

Radial range $r_{in} = 0.4 R_{star}$ $r_{out} = 0.9 R_{star}$ Co-latitudinal range $\theta = [0; \pi]$

Models	L/L _{star}
• ref	1
 boost1d1 	10
 boost1d2 	10 ²
 boost1d4 	10 ⁴

Radial velocity

Thin concentric "circles" -> wavefronts of IGW

 \rightarrow More inclined = higher frequencies \rightarrow

Dispersion relation for IGW $\frac{\omega}{N} = \pm \frac{k_h}{k} = \pm \cos(\alpha)$ (e.g. Vallis, 2017)

 $r = 0.494 R_{\rm tot}$

No scaling relation in the radiative zone!

Le Saux et al. (2022)

Comparison

6

Peaks = g-modes

7

$\ell = 5$

Radial wave flux - Depends on the excitation mechanism

Reynolds stress excitation

Plumes excitation

8

Stein (1967), Press (1981), Goldreich & Kumar (1990), Garcia-Lopez & Spruit (1991), Kumar et al. (1999), Lecoanet & Quataert (2013)

Townsend (1966), Rieutord & Zahn (1995), Montalbán & Schatzman (2000), **Pinçon** et al. (2016)

Lecoanet & Quataert (2013)

Discontinuous

$$\frac{\mathrm{d}F^{\mathrm{D}}}{\mathrm{d}\ln\omega\mathrm{d}\ln k_{\mathrm{h}}} \propto k_{h}^{4}\omega^{-13/2}$$

Linear

$$\frac{\mathrm{d}F^{\mathrm{L}}}{\mathrm{d}\ln\omega\mathrm{d}\ln k_{\mathrm{h}}} \propto k_{h}^{13/3}\omega^{-41/6}d^{1/3}$$

tanh

$$\frac{\mathrm{d}F^{\mathrm{T}}}{\mathrm{d}\ln\omega\mathrm{d}\ln k_{\mathrm{h}}} \propto k_{h}^{5}\omega^{-15/2}d$$

Pinçon *et al.* (2016)

$$\frac{\mathrm{d}F^{\mathrm{P}}}{\mathrm{d}\ln\omega\,\,\mathrm{d}\ln k_{\mathrm{h}}} \propto \mathrm{e}^{-\omega^{2}/4\nu_{\mathrm{p}}^{2}}$$

In MUSIC

 $\frac{\mathrm{d}F}{\mathrm{d}\ln\omega\,\mathrm{d}\ln k_{\mathrm{h}}} \sim \frac{1}{2} \rho T_{S} N \omega r P[\hat{v}_{r}^{2}](r,\omega,\ell)$

Radial wave flux

$\ell = 10$

$$r = r_{\rm conv} - l_{\rm max}$$

For definition of l_{max} see Baraffe et al. (2021)

Radial wave flux

 $\ell = 10$

 $r = r_{\rm conv} - l_{\rm max}$

Wave damping

IGW can transport angular momentum, through 3 processes:

- Radiative damping (Press, 1981; Schatzman, 1993; Zahn, 1997)
- Critical layers (Alvan et al., 2013)
- Non-linear wave breaking (e.g. Gervais et al., 2018)

From Press (1981), wave amplitude = $v_r \propto \rho^{-1/2} \times (\text{geometric term}) \times e^{-\tau/2}$

In MUSIC

 $P_{\text{theory}}[\hat{\mathbf{v}}_r^2](r, \ell_0, \omega) = P$

$$P[\hat{\mathbf{v}}_r^2](r_{\text{conv}} - l_{\text{max}}, \ell_0, \omega) \times e^{-\tau(r, \ell_0, \omega)}$$

Wave damping

 $\ell = 5$

Angular momentum transport (thus evolution of rotation profile) depend on damping rate

 $\rightarrow \tau(r, \ell, \omega)$

$$) = [\ell(\ell+1)]^{3/2} \int_{r}^{r_{e}} \frac{N^{3} dr}{\omega^{4} r^{3}}$$

	10-2	
	10 ⁻³	
	10-4	s ⁻²]
-	10 ⁻⁵	cm ² .
	10 ⁻⁶	[Ŷ ²] [
	10-7	α.
	10 ⁻⁸	
-	10-9	

Wave damping

boost1d1

Very important to increase the radiative diffusivity by the same coefficient as the luminosity!

Convective penetration and waves excitation

Acoustic waves

Intermediate-mass stars

Impact of radial geometry

Plume characterisation

Identification of convective plumes using Lagragian particule tracers

IGW excitation by convective plumes

Position of the penetrative plume identified

r = 0.628

Plume characterisation

 $r = 0.67 R_{\rm tot}$

Good match between position of convective penetration and plumes excitation region

Acoustic waves

Intermediate-mass stars

Convective penetration and waves excitation

Impact of radial geometry

Impact of radial truncation

- Internal gravity waves (IGWs)
 - r_{max} dependence
 - ω_{conv} increases
 - slope flattens
 - amplitude grows
 - r_{\min} dependence
 - change of g-mode frequency with height of resonant cavity

Acoustic waves

Intermediate-mass stars

Convective penetration and waves excitation

Impact of radial geometry

Acoustic modes

Ongoing work with Jane Pratt (Georgia State Uni.): model and identify mixed modes in a Red Giant star

10⁹ 10^{6} · 10³ s⁻²] 10^{0} · $P[\hat{v}_r^2]$ [cm². 10⁻³ · 10-6 -

 10^{-12} ·

Acoustic waves

Intermediate-mass stars

Convective penetration and waves excitation

Impact of radial geometry

5 solar mass star

Analytical expression from Press (1981)

 $\omega=7.5\mu\mathrm{Hz}-\ell=5$

5 solar mass star

Increase of damping from r = 0.8 Rstar

5 solar mass star

Comparison with 2 simulations with artificially enhanced luminosity: 10^1 , 10^2 L_{*}

 $\omega = 30 \ \mu \text{Hz}$

10⁵ 10³ 10^{1} · $P[\hat{v}_{r}^{2}] [cm^{2}. s^{-2}]$ 10^{-1} 10-3 10^{-5} · 10-7

Acoustic waves

Intermediate-mass stars

Convective penetration and waves excitation

Impact of radial geometry

3D models

- Intrinsically 3D effects:
 - rotation
 - magnetic field •
 - quantitative analysis
 - length and time scales of convective structures
 - plume lifetimes

3D models

Convection Zone

Interface

 $v_r/v_{\rm rms}, \ r/R = 0.73$

 $\pi/2$

Radiative Zone

 $v_r/v_{\rm rms}, \ r/R = 0.71$

Credits A. Leclerc

3D models

Ongoing work study of IGW in a 3D solar-like star and comparison with 2D

Power, $\nu = 21 \mu \text{Hz}$

Summary

- Intermediate-mass stars

For more information: Le Saux et al. (2022), A&A 660, A51 Vlaykov et al. (2022), MNRAS 514, 1 Baraffe et al. (2021), A&A 654, A126 Baraffe et al., (2022), A&A 659, A53

- IGWs & artificial boosting in solar-like stars
- **Convective penetration and waves excitation**
 - Acoustic waves
 - Impact of radial geometry