

3D Spectral Radiative Transfer with IRIS 3D Radiation Magnetohydrodynamics with PLUTO results and perspectives

Laurent Ibgui (LERMA, Observatoire de Paris-Meudon, Sorbonne Université)

Main Collaborators : I. Hubeny (2), A. Ciardi (1) S. Orlando (3), S. Colombo (3,4)

LERMA, Observatoire de Paris, Sorbonne Université, CNRS, France
Steward Observatory, Tucson, AZ, USA
INAF – Osservatorio Astronomico di Palermo, Italy
Università di Palermo, Italy

AIPS Workshop: Stellar physics at Paris Observatory (30 June 2022)

Outline

3D spectral radiative transfer for spectral diagnostics: IRIS

- Major physics and numerical features
- application to a laboratory radiative shock
- irradiance from any 3D structure
- on-going and future developments

3D radiation magnetohydrodynamics modeling with PLUTO

- magnetospheric accretion on a CTTS
- NLTE RMHD equations
- precursor UV emitter in accretion column
- future perspectives

IRIS: major features

(Ibgui et al. 2013, A&A, 549, A126)

generic 3D spectral radiative transfer code for the analysis of any radiating object

IRIS post-processes 3D (radiation) (magneto) hydrodynamics (RMHD) simulations in order to calculate **synthetic spectra** (and emissivity maps).

IRIS solves the 3D radiative transfer equation to determine the spectral specific intensity:

$I(\vec{r},\vec{n},\nu,t)$

Physics: -3D geometry, structured non uniform Cartesian grid
-non relativistic velocities (velocity gradient effects due to Doppler shifts) (Sobolev approx.)
-boundary conditions: specified or periodic
-radiation moments (energy, flux, pressure) are calculated by angular integration

Numeric: -Fortran 2003

-CPU optimized (0.2 sec / frequency / direction on a Mac Book Pro)

-short-characteristics method (Kunasz & Auer, JQSRT 1998)

-monotonic cubic interpolation (Auer, ASP 2003)

-angular quadratures (Carlson A4 1963, Carlson & Lathrop 1965, Gauss)

June-30-2022

The short-characteristics method (3D application)

3D structure and radiative properties of a radiative shock: Radiation Hydrodynamic simulation: non stationary evolution (HERACLES)

3D structure and radiative properties of a radiative shock: spectral specific intensities in lateral directions (IRIS)

Irradiance (éclairement) from <u>any</u> 3D structure

unresolved object at infinite distance

$$\varepsilon(M_{D}, v, t) = \frac{\cos \theta_{D}}{d^{2}} I_{ray}(n, v, t) \qquad (W m^{-2} Hz^{-1}) (erg s^{-1} cm^{-2} Hz^{-1})$$

irradiance

$$I_{ray}(n,v,t) = \int_{S_E} I(M,\theta_E,\varphi_E,v,t) \cos\theta_E \, dS_E \qquad \frac{(W \, sr^{-1} \, Hz^{-1})}{(erg \, s^{-1} \, sr^{-1} \, Hz^{-1})}$$

June-30-2022

3D RT and RMHD (L.Ibgui)

1 ___

Irradiance (éclairement) from a spherical blackbody

Test case : laboratory radiative shock

Test case : laboratory radiative shock

June-30-2022

3D RT and RMHD (L.Ibgui)

June-30-2022

 $I(M, \theta_E, \varphi_E, v, t) \cos \theta_E dS_E$

Test case : laboratory radiative shock

Avila Orta, June 2022

- a radiative shock can be identified for some orientations of the unresolved structure wrt observer.

- in the laboratory radiative shock case, $40^{\circ} < \theta_{obs} < 80^{\circ}$, for any ϕ , peak at $\theta_{obs} = 60^{\circ}$
- method can be readily applied to spectra with possible direct comparisons with observations
- future applications : accretion columns on T Tauri stars, any 3D radiating structure

Further developments with IRIS (1)

polarized radiation with synchrotron/cyclotron radiation (magnetized accreting white dwarfs)

Andrea Ciardi (Sorbonne U.) CEA : Emeric Falize, Jean-Marc Bonnet-Bidaud, Clotilde Busschaert, Lucile Van Box Som

T : 10 - 50 keV (116 - 580) 10^6 K . => v_{thermal} : 0.2 - 0.44 c

mildly relativistic electrons (Maxwell – Jüttner distribution): approximate relations

June-30-2022

3D RT and RMHD (L.Ibgui)

Further developments with IRIS (2)

non-LTE radiation with ALI method (Accelerated Lambda Iteration) Ivan Hubeny (University of Arizona) opacities: C IV 1548, N V 1240, O VI 1035, Si IV 1403, Balmer lines, ...

Applications : CTTSs (classical T Tauri stars) Palermo U., INAF, Osservatorio Astronomico di Palermo: Salvatore Orlando, Salvatore Colombo, Rosaria Bonito, Costanza Argiroffi

POLLUX (LUVOiR)

3D Radiation magnetohydrodynamic (RMHD) with PLUTO

PhD (October 2019): Colombo et al. 2019a, 2019b – Univ. and Obs. Palermo (Orlando S.)

3D Radiation magnetohydrodynamic (RMHD) with PLUTO

PLUTO code 3D MHD (Mignone et al. 2007, 2012) \rightarrow 3D LTE RMHD (Kolb et al. 2013) \rightarrow 3D NLTE RMHD (Colombo et al. 2019)

 $\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \, \boldsymbol{u}) = 0$

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{u} \boldsymbol{u}) + \nabla p = \rho \boldsymbol{g} + \frac{k_R \rho}{c} \boldsymbol{F}$$

$$\frac{\partial \epsilon}{\partial t} + \nabla \cdot \left[\left(\epsilon + p \right) \boldsymbol{u} \right] = \rho \boldsymbol{u} \cdot \boldsymbol{g} + \frac{\boldsymbol{k}_R \rho}{c} \boldsymbol{F} \cdot \boldsymbol{u} + \nabla \cdot F_c - L + \boldsymbol{k}_P \rho c \boldsymbol{E}$$

 $\frac{\partial E}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{F} = L - \boldsymbol{k}_{P} \rho \boldsymbol{c} \boldsymbol{E}$

$$p = \rho \frac{k_B T}{\mu m_H} \qquad \qquad \mathbf{F} = -\lambda \frac{c}{k_R \rho} \nabla E$$

$$\epsilon = e + \frac{1}{2}\rho u^2 \qquad \qquad e = \rho c_V T$$

Gravity

٠

•

- Thermal conduction
 - Non-LTE radiation effects:
 - Gain of radiation energy by matter
 - Loss of radiation energy by matter

 k_P , k_R , and L databases are calculated in a **non-LTE** regime (Rodriguez, R. et al. 2018)

3D Radiation magnetohydrodynamic (RMHD) with PLUTO

Helium effects

Gain = $k_p \rho c E$ Planck opacity (cm² g⁻¹) **Temperature (K)** 10.0 10.0 Log (T) [K] Log(K Plank) 2 3 5.0 5.5 6.0 6.5 4.0 4.5 7.0 Log(z) [10⁹cm] log(z)[10⁹cm] 1.0 1.0 0.1 0.1 2 3 4 5 6 3 0 1 2 5 0 1 4 6 Time (ks) Time (ks)

Exploring the role of radiation and magnetic field, with multi-D RMHD simulations.

Comparison with observations (IRIS) (Synthetic Spectra)

Orlando et al. 2013 A&A 559, A127

3D RT and RMHD (L.Ibgui)

3D Radiation magnetohydrodynamic (RMHD) with PLUTO