

The Toulouse Geneva Evolution Code (TGEC)

Alain Hui-Bon-Hoa

Institut de Recherche en Astrophysique et Planétologie (Observatoire Midi-Pyrénées, CNRS, CNES, Université de Toulouse)

Main features of TGEC

- TGEC is a 1-D stellar evolution code
- originates from the Geneva code in the early 90's, hence the name
- used as a testbed for non-standard physics (at that time) -> radiative diffusion, accretion of planets, fingering mixing, rotational mixing, etc.
- to date, one the few codes implementing <u>self-consistent radiative</u> <u>diffusion</u> modelling (with CESTAM and MESA)

Main features of TGEC

- > Summary of the implemented microphysics:
 - nuclear reaction network according to the NACRE compilation + LUNA rate for the $^{14}N(p,\gamma)^{15}O$ reaction
 - OPAL 2001, OPAL 2005 or MHD equations of state
 - Rosseland opacities computed on-the fly with the Opacity Project (OP) cross-sections (OPAL tables also available, Wichita opacs @ low T)
 - revised opacity for Ni
 - atomic diffusion with the Chapman & Cowling approach (test atom approximation in a buffer medium)
 - diffusion coefficients from Paquette et al. (1986)
 - radiative accelerations computed with the Singled Valued Parameters (SVP) method of G. Alecian & F. LeBlanc. On-the-fly calculations from the Opacity Project monochromatic opacities in progress...

Main features of TGEC

- Summary of the implemented macrophysics:
 - convection with either the MLT, Canuto & Mazzitelli (1991) or Canuto et al. (1996) formalisms
 - fingering ("thermohaline") mixing with the prescription of Brown et al.
 (2013)
 - rotational mixing through meridional circulation:
 - \diamond Zahn (1992) -> self-consistent differential rotation, μ -gradient effects omitted
 - \diamond Vauclair (1999) -> solid rotation, μ -gradient effects included
 - other parametric turbulent mixing prescriptions (e.g., full mixing down to the Z-bump, etc.)
 - effect of engulfment of planets
 - mass loss (removal of the outermost layers at each time step)

- > On-the-fly computation of the Rosseland mean opacities (RMO):
 - mandatory when the chemical composition varies with depth
 - computing time too huge with OPCD routines (computation from scratch at each call, including the reading of the data)
 - new strategy needed:
 - 1 RMOs computed at the beginning of the evolution run for all the OP (T, N_e) grid points with the initial abundances and stored in memory

- ② for a layer having the initial abundances, pick the RMOs of the 16 points surrounding the (T, N_e) of the layer + bi-cubic interpolation
- \bigcirc if the abundances depart from the initial ones, (parallelised) computation of the RMOs for the 16 points surrounding the (T, $N_{\rm e}$) values of interest + bi-cubic interpolation
- 4 if the next layer of the model has the same abundances (e.g., convective zone), compute the RMOs only for the points not considered in the previous layer
- these new routines are also implemented in CESTAM! (also, same approach recently in MESA)

- New nickel opacities:
 - OP cross-sections for Ni extrapolated from Fe -> <u>underestimated</u> in the Z-bump (e.g., Turck-Chièze et al. 2016)

replaced in the OP files by detailed computations with the SCO-RCG

code (Hui-Bon-Hoa, Pain & Richard 2022)

Ni RMOs enhanced up to 6 times in the
 Z-bump, but global RMOs weakly changed

- Radiative accelerations:
 - express the momentum transfert through photon absorptions for each chemical species
 - SVP, a parametric method using analytic functions and pretabulated coefficients (to avoid the integration over frequencies → save time!)

instead of
$$g_{il} = (n_{ik}/A_i m_p c n_i) \int_0^\infty \sigma_{i,km} \phi_{\nu} d\nu$$
 cross-section (chemical elem.)

27/6/2022 Atelier codes stellaires

- Radiative accelerations:
 - express the momentum transfert through photon absorptions for each chemical species
 - SVP, a parametric method using analytic functions and pretabulated coefficients (to avoid the integration over frequencies → save time!)

with
$$q = 5.575 \times 10^{-5} \frac{T_{\text{eff}}^4}{T} \left(\frac{R}{r}\right)^2 \frac{1}{A}$$
 and $b = 9.83 \times 10^{-23} \frac{N_{\text{e}} T^{-1/2}}{X_{\text{H}}}$.

- SVP parameters from 1 to 5 M_{\odot} in TGEC (LeBlanc & Alecian 2004), now available for 17 masses from 1 to 10 M_{\odot} (Alecian & LeBlanc 2020)
- weak and smooth variation of the SVP params vs. mass → interpolations if needed
- 12 (+1) elements considered: C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, and Fe, + Sc (1.5 and 2 M_{\odot} , LeBlanc & Alecian 2013)
- publicly available: http://gradsvp.obspm.fr

27/6/2022 Atelier codes stellaires

- > Role of atomic diffusion in massive Main Sequence pulsators:
 - oscillation modes not satisfactorily reproduced with models having homogeneous abundances (lack of opacity in the Z-bump, where the pulsations are driven through κ-mechanism)

- to have the required opacity

- > Role of atomic diffusion in massive Main Sequence pulsators:
 - evolution of a 9.5 M_{\odot} model with atomic diffusion, fingering mixing and mass loss (Hui-Bon-Hoa & Vauclair 2018a,b)

- > Influence of fully consistent opacities on fundamental parameters:
 - evolution codes often use tabulated Rosseland opacities (not always consistent with the detailed chemical composition in Z)
 - when RMOs are computed consistently with the abundances → age changes

from Hui-Bon-Hoa 2021

- ➤ Modelling of the Sc abundance evolution in Am stars:
 - Am stars (aka metallic-line stars) show surface abundance anomalies (Ca and Sc underabundant, heavy elements overabundant)

- various transport process scenarii:
 - without mass loss (convection only, convection + fingering mixing, full mixing down to the Z-bump, "RMT")
 - ♦ RMT models give the best overall agreement

from Hui-Bon-Hoa et al. 2022, submitted

➤ Modelling of the Sc abundance evolution in Am stars:

- various transport process scenarii:
 - with mass loss (and convective mixing only)
 - ightharpoonup mass-loss rates in $[10^{-14};10^{-13}]\ M_{\odot}/{\rm yr}$ (consistent with observed values)
 - all the rates considered consistent with observed abundances

from Hui-Bon-Hoa et al. 2022, submitted

- Main features of TGEC
- · Some implementations in more details
- Recent studies with TGEC

Merci de votre attention, à vos questions!