Fhermohaline convection

CESTAM: Transport of chemical elements

Morgan Deal

Thermohaline convection

Thermohaline convection

Macroscopic transport processes

Thermohaline convection

Macroscopic transport processes

Microscopic transport processes (atomic diffusion)

Thermohaline convection

Macroscopic transport processes

Microscopic transport processes (atomic diffusion)

Accretion

Atomic diffusion + rotation Lithium in Pop. II stars Macroscopic transport Accretion ргосезяея Microscopic transport processes (atomic diffusion)

Thermohaline convection

Diffusion equation

- → Resolution of the equation: **finite elements**
- → approximation of the scalar product: **Gauss integration**
- → Iteration of **Newton-Raphson** for convergence
- → H, He, Li, Be, B, C, N, O, Ne, Na, Mg, Al, Si, S, Ca, Fe and isotops

Thermohaline convection

Diffusion velocity in the trace element case

Paquette et al. 1986

- → Diffusion velocities from Burgers 1969 OF Michaud & Proffitt 1993
- → Partial ionisation: Saha equation

Thermohaline convection

Radiative accelerations

Expensive to compute (10 time faster with Hui-Bon-Hoa 2021 procedure)

hermohaline convection

Atomic diffusion + rotation Lithium in Pop. II stars

i: ionisation state *E*: element

SVP approximation

$$g_{i,line} = q \varphi_i^* (1 + \xi_i^* c_i) \left(1 + \frac{c_i}{b \psi_i^*} \right)^{\alpha_i}$$

$$g_{i,cont} = 7, 16 \times 10^{-26} \frac{N_e T_{eff}^4}{T^{3/2}} \left(\frac{R}{r} \right)^2 \frac{1}{A_i^2} \Theta_i \left(\frac{\chi}{1+\chi} \right)^{b_i}$$

$$\Theta_i \approx \overline{a_i} \frac{N_{i-1,0} p_{i-1}}{N_{i-1} p_i g_0} \sum_k n_k g_k Q_k$$

$$g_{rad,E} = \frac{\sum_{i} N_i(g_{i,cont} + g_{i,line})}{\sum_{i} N_i}$$

- → Single-Valued Parameter (6 tabulated parameters)
- → Fast to compute

Atelier codes stellaires - 27th of June 2022

Alecian & LeBlanc 2004, 2020

Atomic diffusion + rotation

Lithium in Pop. II stars

5.6 F 4.8 F 5.2 -5.2 4.4 5.0 4.8 4.4 4.6 4.0 4.4 3.6 4.2 3.2 4.0 2.0 Ca Mg 2.8 3.8 2.4 6.0 5.2 5.6 6.0 5.2 5.6 6.0 5.2 5.6 4.8 4.8 4.8 5.0 F Ξ 4.5 4.5 4.0 4.0 4.0 3.5 F 3.5 3.0 4 3.0 3.0 2.0 Na 2.5 Ne 2.5 1.0 2.0 5.6 6.0 5.2 5.6 6.0 5.2 5.6 6.0 5.2 4.8 4.8 5.0 F 4.5 4.5 45 7 4.0 4.0 log grad 4.0 3.5 A 3.5 3.0 3.0 S Si 3.0 F 2.5 2.5 5.2 5.6 6.0 4.8 5.2 5.6 6.0 5.2 5.6 6.0 4.8 4.8 log T(K)

Atelier codes stellaires - 27th of June 2022

Alecian & LeBlanc 2004, 2020

Thermohaline convection

These effects are different for each element and depend on :

- the abundance of the element
- the ionisation state
- the photon flux

Direct influence on stellar structure and surface abundances

Thermohaline convection

Atomic diffusion + rotation Lithium in Pop. II stars

 $\log(\Delta M/M_*)$

0.1

0.0

-0.1

 $\log (X_{|}^{(K)}X_{imi}(A) / X_{imi}(A)) = 0.0$

0.1

0.0

-0.1

-

-5

....

Campilho, Deal et al. 2022

Fe Ni

Atelier codes stellaires - 27th of June 2022

Atomic diffusion + rotation

Lithium in Pop. II stars

Deal et al. 2018

Thermohaline convection

Atomic diffusion + rotation Lithium in Pop. II stars

Deal et al. 2018

Atelier codes stellaires - 27th of June 2022

Atelier codes stellaires - 27th of June 2022

Difference of M_{c7} between models with and without radiative accelerations

Difference of M_{cr} between models with and without radiative accelerations

Larger than the uncertainty on the acoustic depth of surface convective zone of some F type stars from *Kepler* (Vermat 2017)

Thermohaline convection

Difference of radius between models with and without radiative accelerations

2% in radius at maximum

Atomic diffusion (with radiative accelerations)

. First estimation

94 Ceti A: age difference of 4% (Deal et al. 2017)

PLATO: 10% on ages, 5% on masses and 2% on radii

Atomic diffusion (with radiative accelerations)

. First estimation

94 Ceti A: age difference of 4% (Deal et al. 2017)

. Using optimization method (AIMS, Lund & Reese 2017, Rendle et al. 2019) : Classical + seismic constraints

1.4 M at solar metallicity: difference in age of 10-15%, in mass of 1-4%, and in radius of 1% (Deal et al. 2018, 2020)

PLATO: 10% on ages, 5% on masses and 2% on radii

Thermohaline convection

Macroscopic transport Accretion processes

Microscopic transport processes (atomic diffusion)

Thermohaline convection

Shear turbulence

Meridional circulation

Atomic diffusion Thermohaline of Atomic diffusion + rotation Lithium in Pop. II stars

Transport induced by the rotation

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(r^2 \Omega \right)_{M_r} = \frac{1}{5\rho r^2} \frac{\partial}{\partial r} \left(\rho r^4 \Omega U_2 \right) + \frac{1}{\rho r^2} \frac{\partial}{\partial r} \left(\rho \nu_v r^4 \frac{\partial \Omega}{\partial r} \right)$$

$$D_{\rm eff} = \frac{(rU_2)^2}{30D_h} \qquad \qquad D_v = \nu_v$$

$$D_{
m turb,rota} = D_v + D_{
m eff}$$

- \rightarrow **D**_b:Mathis et al. 2004, 2018
- → D_v: Talon & Zahn 1997 (+ possibility to include an additional vertical viscosity)
- → Am loss: Matt et al. 2015
- → Transport of chemicals directly linked to the transport of angular momentum

Is atomic diffusion negligible in rotating stars?

What is the combined effect of atomic diffusion and rotation on stellar parameters?

Deal et al. 2020

Deal et al. 2020

Atelier codes stellaires - 27th of June 2022

Atomic diffusion Atomic diffusion + rotation Thermohaline convection

Lithium in Pop. II stars

Thermohaline convection

Deal & Martins 2021

Perturbative approach of the BBN model

 \rightarrow α : fine-structure constant, varies between Big Bang and now

The whole problem cannot be solved by α variation due to the constraint on deuterium

Deal & Martins 2021

Perturbative approach of the BBN model

- \rightarrow α : fine-structure constant, varied between Big Bang and now
- → Δ : depletion factor $\implies {}^{7}\text{Li}_{\text{obs Pop II}} = (1-\Delta)^{7}\text{Li}_{\text{primordial}}$

The whole problem cannot be solved by α variation due to the constraint on deuterium

Deal & Martins 2021

Perturbative approach of the BBN model

Deal & Martins 2021

Perturbative approach of the BBN model

Deal & Martins 2021

Perturbative approach of the BBN model

- \rightarrow α : fine-structure constant, varies between Big Bang and now
- → Δ : depletion factor $\implies {}^{7}Li_{obs Pop II} = (1-\Delta)^{7}Li_{primordial}$
 - ~ ^ 20% of the lithium problem can be solve by a variation of α
 - ~ 80% of the lithium problem can be solve by a depletion occurring in stars

Deal & Martins 2021

Perturbative approach of the BBN model

- \rightarrow α : fine-structure constant, varies between Big Bang and now
- → Δ : depletion factor $\implies {}^{7}\text{Li}_{obs Pop II} = (1-\Delta)^{7}\text{Li}_{primordial}$
 - ~ ^ 20% of the lithium problem can be solve by a variation of α
 - ~ 80% of the lithium problem can be solve by a depletion occurring in stars

What are the processes responsible of the depletion in stars?

Atomic diffusion Atomic diffusion + rotation Thermohaline convection

Lithium in Pop. II stars

Deal & Martins 2021

Montpellier/Montréal

CESTAM

Atomic diffusion Atomic diffusion + rotation

Lithium in Pop. II stars

Deal & Martins 2021

Atomic diffusion + Rotation

D_b: Mathis et al. 2018

D: Talon & Zahn 1997

Extract. AM: Matt et al. 2015, 2019

Atomic diffusion Thermohaline converse Atomic diffusion + rotation Lithium in Pop. II stars

Deal & Martins 2021

Atomic diffusion + Rotation + simple penetrative convection

Atomic diffusion Thermohaline converse Atomic diffusion + rotation Lithium in Pop. II stars

Deal & Martins 2021

Atomic diffusion + Rotation + simple penetrative convection

Next step: use more realistic modelling of the penetration convection, similarly to Dumont et al. 2020

Thermohaline convection

Macroscopic transport processes

Microscopic transport processes (atomic diffusion)

Accretion

Thermohaline convection

→ Thermohaline convection

Garaud 2014

- unstable mean molecular weight gradient
- stable temperature gradient

1D prescriptions (from 2D and 3D simulations):

Kippenhahn et al. 1980, Denissenkov et al. 2010, Traxler et al. 2011, Brown et al. 2013

$$D_{\rm fing} = N u_{\mu} \kappa_{\mu}$$

Apply on stellar cases : Planetary matter accretion, elements accumulation due to radiative accelerations, evolved stars, ...

Thermohaline convection

Conclusions

- → A proper modelling of the transport (angular momentum and chemicals) is mandatory for an accurate inference of stellar parameters
- → Atomic diffusion is not negligible in solar-like rotating stars
- → An accurate modelling of the transport of chemicals requires an accurate modelling of the transport of angular momentum
- → We are still **missing transport processes** to explain surface abundances of solar-like stars (the parameters we infer are then still uncertain)
- → Atomic diffusion, rotation and penetrative convection may explain lithium abundances in Population II stars, starting with an initial primordial abundance

	Atomic diffusion Atomic diffusion + rotation Lithium in Pop. II stars	Thermohaline convection	
Diffusion velocities (for mixture of metals)	 Burger 1969 Chapman & Cowling 1970 Michaud & Proffitt 1993 Thoul+94 		
Radiative accelerations	 direct use of atomic data (atmospheres) use of opacity tables with fixed frequency grids (Montréal/Montpellier code: Turcotte+98, OPCD: Seaton 2005) Single-Valued Parameter approximation (LeBlanc & Alecian 2004) 		
Opacities	- OP monochro - OPAL monoc not public)	- OP monochromatic opacities (OPCD, Seaton 2005) - OPAL monochromatic opacities (Montréal/Montpellier code, tables not public)	

Atomic diffusion (with radiative accelerations)

. First estimation

94 Ceti A: age difference of 4% (Deal et al. 2017)

. Using optimization method (AIMS, Lund & Reese 2017, Rendle et al. 2019) : Classical + seismic constraints

1.4 M at solar metallicity: difference in age of 10-15%, in mass of 1-4%, and in radius of 1% (Deal et al. 2018, 2020)

Rotation + atomic diffusion

1.4 M at solar metallicity: difference in age of 25%, in mass of 2-5%, and in radius of 2% (Deal et al. 2020)

PLATO: 10% on ages, 5% on masses and 2% on radii

hermohaline convection

Atomic diffusion + rotation Lithium in Pop. II stars

Atelier codes stellaires - 27th of June 2022

Deal et al. 2018

Thermohaline convection

Atomic diffusion + rotation Lithium in Pop. II stars

Thermohaline convection

Deal et al. 2018

Atomic diffusion + rotation Lithium in Pop. II stars

Inermonaline convection

Calibrating the missing process(es) with ah-hoc prescription:

$$D_{\rm turb} = \omega D(He)_0 \left(\frac{\rho_0}{\rho}\right)^n$$

Richer et al. 2000; Richard et al. 2001; Michaud et al. 2011; Semenova, Bergemann, Deal et al. 2020

NGC2420: ~2.5 Gyr, [Fe/H] = -0.10 +/- 0.1 dex

Semenova, Bergemann, Deal et al. 2020

Thermohaline convection

 $P \sim e^{-\chi^2/2} / P_{max}$

