Multi-dimensional stellar structure models with the fully compressible time implicit code MUSIC

I. Baraffe (University of Exeter - CRAL-ENS Lyon)

Thomas Guillet, Adrien Morison, Dimitar Vlaykov, Josh Clark, **Arthur Le Saux**, **Armand Leclerc** (Exeter/Lyon)

T. Goffrey (Warwick), J. Pratt (Livermore) R. Walder, D. Folini (Lyon) - M. Viallet S. Brun (CEA), V. Reville (Toulouse)

European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

Development of MUSIC "Multidimensionnal Stellar Implicit Code"

(Viallet et al. 2011, 2013, 2016; Geroux et al. 2016; Pratt et al. 2016; Goffrey et al. 2017) ANR blanche; ERC "TOFU" + "COBOM"

- Cartesian Spherical geometry (2D or 3D)
- Fully compressible hydrodynamics

$$\frac{\partial}{\partial t}\rho = -\nabla \cdot (\rho \vec{u})$$
$$\frac{\partial}{\partial t}\rho e = -\nabla \cdot (\rho e \vec{u}) - P\nabla \cdot \vec{u} + \nabla \cdot (\chi \nabla T)$$
$$\frac{\partial}{\partial t}\rho \vec{u} = -\nabla \cdot (\rho \vec{u} \otimes \vec{u}) - \nabla P + \rho \vec{g}$$

Thermal conductivity (radiative transport)
 κ is the gas opacity (OPAL tables)

$$\chi = 16\sigma T^3/3\kappa\rho$$

- Realistic equation of state (ionisation, partial degeneracy, mixture of composition, etc...)
- Implicit Large Eddy simulations (ILES; numerical viscosity due to truncation errors of scheme)

• Benchmark tests (Rayleigh-Taylor, Kelvin Helmholtz, Taylor-Green vortex)

Accurate for a wide Mach number range M ~ 10⁻⁶ - 1 (Goffrey et al. 2017)

Finite volume method on a staggered grid

 (helps for hydrostatic equilibrium ∇P = -ρg
 No need for a well balanced scheme)

Initial model from 1D stellar evolution calculation

► interface with Lyon code (Baraffe et al.) and MESA (Paxton et al.)

- Solution to treat various stiff scales
 - **Time implicit integration** (no stability limit on the time-step)

$$\frac{du(t)}{dt} = f(u(t)) \longrightarrow u^{n+1} = u^n + \Delta t f(u^{n+1})$$

Iow storage Jacobian-Free-Newton-Krylov solver (Knoll & Keyes 2004)
 (Jacobian is not stored and matrix-vector products are estimated with finite-differencing)
 (Viallet et al. 2016; Goffrey et al. 2017)

- Additional and on-going developments (*Thomas Guillet*)
 - Rotation (coriolis + centrifugal force)
 - Wave analysis (spherical harmonics projection + FT) (*Arthur Le Saux's talk*)
 - Viscosity
 - Passive and active scalar (advection and chemical diffusion)
 - Lagrangian tracer particles
 - MHD (in progress)

Motivation for MUSIC: improve phenomenological approaches used in 1D stellar evolution codes to describe major hydro/MHD processes.

I. First application: Effect of accretion on the structure of very young low mass, convective stars (Geroux et al. A&A, 2016)

Problem: Phenomenological treatment of accretion in 1D stellar evolution codes based on major assumptions of instantaneous redistribution of accreted mass and energy in the interior

(Baraffe et al. 2009, 2012; Hosokawa et al. 2011; Kunitomo et al. 2017; Sigurd & Haugbolle 2017; Haemmerle et al. 2019, etc...)

Effect of amount of accretion energy absorbed $L_{acc} = \alpha (GM\dot{M})/R$

- $\alpha \sim 0 \longrightarrow$ "cold" accretion
- $\alpha > 0 \longrightarrow$ "hot" accretion

➡ Test of these assumptions with MUSIC

Treatment of the surface must be realistic with $F_{surf} = \sigma T^4$

Use of a spliced grid to resolve smaller scales/steep gradients at the surface

One main result:

- For hot accretion (α ≥ 0.1 with L_{acc} = α (GMM)/R), formation of a hot surface layer (no deep mixing of accretion energy)
- Assumption in 1D codes of redistribution of accretion energy deep in the interior **overestimates the effect** on the structure for α ≥ 0.1 (expansion of accreting object)
- Use of an accretion boundary condition L_{surf} = L_{acc} is more realistic in 1D codes

II. A numerical survey of convective penetration/overshooting in stars

Extra mixing at a convective boundary due to convective penetrating flows or "plumes": process of overshooting or *penetration*

(Roxburgh 1965; Shaviv & Salpeter 1973; Schmitt et al 1984; Zahn 1991, etc...)

Chemical mixing, transport of angular momentum, wave excitation, etc...

➡ Affects the Li depletion in solar type stars, core size, age, surface properties and abundances, last stages of evolution, etc...

Standard treatment in 1D codes: instantaneous mixing over an arbitrary width $d_{ov} = \alpha_{ov} H_P$ (α_{ov} free parameter)

Goals & Questions we want to address with MUSIC:

1) Derive scaling laws dov (Mstar, Lstar, etc..) to implement in 1D codes for a range of stellar masses at various age (pre-MS, MS, post-MS)

2) Can we use the same numerical and statistical framework for envelope and core overshooting to derive d_{ov} ?

- Envelopes (Mach ~ 10⁻⁴ 1) Cores (Mach < 10⁻⁴)
- Generalisation of statistical analysis based on **extreme events of penetrating** flows to convective envelopes (downward) and cores (upward)?
 (Pratt et al. 2017)

3) Analysis of gravity and acoustic waves \rightarrow build the link with asteroseismology (see next talk of Arthur Le Saux)

4) What is the impact of rotation and magnetic field on convective penetration?

1) Convective envelopes of solar-type stars

2D Experiment: Numerical simulations of a 1 M_{\odot} solar-like model with enhanced luminosity: L x 1, 10, 10², 10⁴

(Baraffe et al. 2021; Le Saux et al. 2022)

The problem of thermal relaxation of stellar hydrodynamical simulations Achieving thermal relaxation is a well-known challenge for hydrodynamical simulations based on realistic stellar structures

• $\tau_{\text{thermal}} = GM^2/(RL) >> \tau_{\text{dyn}}, \tau_{\text{conv}},$

 \rightarrow computationally unreachable for major phases of evolution (MS, He burning)

- Common procedure:

Artificially increase the luminosity and/or the thermal diffusivity

L can be increased by up to 10⁷

 \Rightarrow decrease the thermal timescale au_{thermal}

 \Rightarrow enables to reach a thermally relaxed steady state \Leftrightarrow "accelerate" the simulation

(Meakin & Arnett 2007; Brun et al. 2011; Rogers et al. 2013, Cristini et al. 2017; Edelmann et al. 2019; Horst et al. 2020, etc...)

Radial velocity snapshot: convective envelope and radiative core

Analysis of penetrative flows ("plumes") as a function of L_{star}

Visualisation of radial velocity and temperature fluctuations

Use the framework based on extreme events to infer an overshooting depth: Extreme penetrating plumes (and not the average) characterise the relevant penetration depth in stars \rightarrow contribute to mixing on the long term (*Pratt et al. 2017, 2020; Baraffe et al.2021*)

Local heating due to convective flow penetration

local increase of the temperature in the region of penetration $(\Delta T = \langle T \rangle_{\theta, t} - T_{init})$

 \rightarrow peak in T corresponds to a peak of the rate-of-strain tensor tr(s²)

⇒ compression and shear induce local heating and thermal mixing (through mixing of hot material)

Modification of the local background is enhanced with increasing L

 \Rightarrow Reduce the braking of the penetrating plumes

 \Rightarrow strongest plumes progress deeper \rightarrow broadening the penetration region

 A "boosted" model is not only an "accelerated" version of a reference model Increasing L can push the simulated conditions away from the original target star
 These simulations may describe different physical conditions

Impact of local heating on the solar structure and the "solar modelling" problem

Test on a 1D model: Modification of the temperature profile just below the convective envelope, following the hydro simulations (*Baraffe et al. 2022*)

Difference between modified and non-modified Sun model

• Next steps

- Extension to 3D

Preliminary results for a solar model show similar structures with penetrating "plumes" (Vlaykov, et al. in prep)

Visualisation of radial velocity for an arbitrary angle φ (513³)

- Analysis of overshooting depths for pre-MS and MS solar-like models (Vlaykov, et al. in prep) and of Red Giant Branch stars (Pratt et al. in prep)

- Impact of rotation (and magnetic field) (Vlaykov, Guillet, et al. in progress)

2) Study of the convective core of massive stars

• 2D survey of convective penetration as a function of stellar mass: 3 M_{\odot} - 20 M_{\odot}

(Baraffe, Clarke, Mason et al. in prep)

• Use of statistical approach of extreme penetrating flows to determine the extent of the overshooting layer as a function of stellar mass

Extent of penetration based on first zero of f_k and $f_{\delta T}$ at a given time t 0.01 I_{max}(t) 0.008 0.006 lo/r_{lot} 0.004 average 0.002 0 50 100 150 £ A

vert. kinetic energy flux $f_k(r,\theta,t) = 1/2 \rho v^2 v_r$ vertical heat flux $f_{\delta T}(r,\theta,t) = \rho c_P \delta T v_r$

(Pratt et al. 2017)

- \rightarrow Distribution of maximum depths of penetrating convective flows $I_{max}(t)$
- → Time average of I_{max} provides an effective width of the overshooting layer
 r can be used to characterise the extent of mixing on the long term d_{ov} = < I_{max}(t) >t

➡ Pioneering analytical model of Zahn (1991)

First order estimate of the deceleration of a convective downdraft in a nearly adiabatically stratified penetration layer:

 $1/2 dv^2/dz = g \delta \rho / \rho \propto g \delta T/T$

 \rightarrow Estimate of a penetration distance L_P \propto L^{1/2} (r_{conv}/H_P)^{1/2}

⇒ Application of our scaling relationship to stellar evolution models $d_{\rm ov}/H_{\rm P,CB} = 3.05 \times 10^{-3} \times (L/L_{\odot})^{1/3} \times (r_{\rm conv}/H_{P,CB})^{1/2} + 0.02$

Comparison of tracks with Milky Way stars from Castro et al. (2014)

→ First predictions going in the right direction with d_{ov} ↑ with M_{star}

 \rightarrow But seems to need an increase of d_{ov} (up to ~factor 2) for M > 10 M_{\odot} 0.5 0.4 values required to fit 0.3 d_{ov}/H_{P,CB} 20 Mo S.0 15 M 10 M 5 M. 0.1 3 M. 0 2 3 4 5 $\log (L_{slaw}/L_{\odot})$

Conclusions

Generalised approach with MUSIC to address convective boundary mixing for envelopes (downward overshooting) and cores (upward overshooting)

✓ Convective envelopes:

\checkmarkArtificial enhancement of L_{star} should be taken with caution

✓ These experiments reveal a local heating in the penetration region
→ solar modelling problem

✓ Convective cores:

***** Preliminary scaling found: $d_{ov} \propto L^{1/3} (r_{conv}/H_P)^{1/2}$ consistent with observations suggesting $d_{ov} \uparrow M_{star}$

- But first predictions (based on ZAMS cores) seem to underestimate d_{ov}
 - → Effect of rotation? MHD??
 - → → Development of double-diffusive instabilities?