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Development of MUSIC “Multidimensionnal Stellar Implicit Code”

(Viallet et al. 2011, 2013, 2016; Geroux et al. 2016; Pratt et al. 2016; Goffrey et al. 2017)
ANR blanche; ERC “TOFU” + "COBOM"

- Cartesian - Spherical geometry (2D or 3D)

 Fully compressible hydrodynamics

8 3 Spherical wedge
ap = -V (pu)

%pe: ~V - (ped) — PV -G 4+ V- (xVT)

o _ L —

5Pl = —V - (pi ® u) — VP + pg

- Thermal conductivity (radiative transport)

_ 3
x is the gas opacity (OPAL tables) X = 160T" /3kp

- Realistic equation of state (ionisation, partial degeneracy, mixture of composition, etc...)

 Implicit Large Eddy simulations (ILES; numerical viscosity due to truncation errors of scheme)



*Benchmark tests (Rayleigh-Taylor, Kelvin Helmholtz, Taylor-Green vortex)
» Accurate for a wide Mach number range M ~ 106 - 1

(Goffrey et al. 2017)

 Finite volume method on a staggered grid

(helps for hydrostatic equilibrium VP = -pg
No need for a well balanced scheme)

 Initial model from 1D stellar evolution calculation
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» interface with Lyon code (Baraffe et al.) and MESA (Paxton et al.)
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* Solution to treat various stiff scales

r Time implicit integration (no stability limit on the time-step)

du(t)

- = ) — u"T ="+ ALf(u"T)

» low storage Jacobian-Free-Newton-Krylov solver (Knoll & Keyes 2004)
(Jacobian is not stored and matrix-vector products are estimated with finite-differencing)
(Viallet et al. 2016; Goffrey et al. 2017)

* Additional and on-going developments ( Thomas Guillet)

- Rotation (coriolis + centrifugal force)

- Wave analysis (spherical harmonics projection + FT) (Arthur Le Saux's talk)
- Viscosity

- Passive and active scalar (advection and chemical diffusion)

- Lagrangian tracer particles

- MHD (in progress)

Motivation for MUSIC: improve phenomenological approaches
used in 1D stellar evolution codes to describe major hydro/MHD processes.




l. First application: Effect of accretion on the structure of very
young low mass, convective stars (Geroux et al. A&A, 2016)

Problem: Phenomenological treatment of accretion in 1D stellar evolution codes based
on major assumptions of instantaneous redistribution of accreted mass and energy in

the interior
(Baraffe et al. 2009, 2012; Hosokawa et al. 2011; Kunitomo et al. 2017, Sigurd & Haugbolle 2017; Haemmerle et
al. 2019, etc...)

Effect of amount of accretion energy absorbed Lacc= o (GMM)/R
a ~0 —> “cold” accretion
a >0 —> “hot” accretion



wTest of these assumptions with MUSIC
Treatment of the surface must be realistic with Fsuri = o T4

Use of a spliced grid to resolve smaller scales/steep gradients at the surface
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Pacc — M/(Aaccvinﬂow)
ace = 4T R?sin(A0)

Aace, Vinflow, A8 from
boundary layer
models of Kley & Lin
(1996)



One main result:
- For hot accretion (a = 0.1 with Lacc = a (GMM)/R),

formation of a hot surface layer
(no deep mixing of accretion energy)

- Assumption in 1D codes of redistribution of accretion
energy deep in the interior overestimates the effect

on the structure for « = 0.1 (expansion of accreting object)

- Use of an accretion boundary condition Lsurf = Lacc
is more realistic in 1D codes




Il. A numerical survey of convective penetration/overshooting in stars

envelope

w Extra mixing at a convective boundary due
to convective penetrating flows or "plumes”:
process of overshooting or penetration

(Roxburgh 1965; Shaviv & Salpeter 1973; Schmitt et al 1984;
Zahn 1991, etc...)

w Chemical mixing, transport of angular
momentum, wave excitation, etc...

w Affects the Li depletion in solar type stars,
core size, age, surface properties and
abundances, last stages of evolution, etc...

Schwarzschild boundary

doy,
Standard treatment in 1D codes: instantaneous mixing ——
over an arbitrary width dov= aov Hp

(aov free parameter)



Goals & Questions we want to address with MUSIC:

1) Derive scaling laws dov (Mstar, Lstar, €tc..) to implement in 1D codes for a range of
stellar masses at various age (pre-MS, MS, post-MS)

solar like

2) Can we use the same numerical and statistical framework for envelope and core
overshooting to derive dov?

* Envelopes (Mach ~ 104 - 1) Cores (Mach < 10-4)

« Generalisation of statistical analysis based on extreme events of penetrating
flows to convective envelopes (downward) and cores (upward)?

(Pratt et al. 2017)

3) Analysis of gravity and acoustic waves — build the link with asteroseismology (see
next talk of Arthur Le Saux)

4) What is the impact of rotation and magnetic field on convective penetration?



1) Convective envelopes of solar-type stars

2D Experiment: Numerical simulations of a 1 M. solar-like model with enhanced
luminosity: L x 1, 10, 102, 104
(Baraffe et al. 2021; Le Saux et al. 2022)

The problem of thermal relaxation of stellar hydrodynamical simulations
Achieving thermal relaxation is a well-known challenge for hydrodynamical
simulations based on realistic stellar structures

. TthermaI=GM2/(RL) >> Tdyn, Tcony,
— computationally unreachable for major phases of evolution (MS, He burning)

m Common procedure:
Artificially increase the luminosity and/or the thermal diffusivity
L can be increased by up to 107

= decrease the thermal timescale tiherma
= enables to reach a thermally relaxed steady state — "accelerate" the simulation

(Meakin & Arnett 2007; Brun et al. 2011; Rogers et al. 2013, Cristini et al. 2017;
Edelmann et al. 2019; Horst et al. 2020, etfc...)



Radial velocity snapshot: convective envelope and radiative core
Lstar 104xLstar

down flows
up flows
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- Analysis of penetrative flows ("plumes") as a function of Lsiar

Visualisation of radial velocity and temperature fluctuations
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Use the framework based on extreme events to infer an overshooting depth:
Extreme penetrating plumes (and not the average) characterise the relevant penetration depth in
stars — contribute to mixing on the long term (Pratt et al. 2017, 2020, Baraffe et al.2021)



e Local heating due to convective flow penetration

0.8

0.64

Lstarx 10

“rconv

local increase of the temperature
in the region of penetration
(AT = <T>¢,t- Tinit)

:K peak in T corresponds to a peak of the

rate-of-strain tensor tr(s?)

=» compression and shear induce local heating

and thermal mixing (through mixing of hot
material)

w Modification of the local background is enhanced with increasing L
= Reduce the braking of the penetrating plumes

= strongest plumes progress deeper — broadening the penetration region

= A "boosted" model is not only an "accelerated" version of a reference model

Increasing L can push the simulated conditions away from the original target star
= These simulations may describe different physical conditions




e Impact of local heating on the solar structure and the "solar modelling"” problem

Test on a 1D model: Modification of the temperature profile just below
the convective envelope, following the hydro simulations (Baraffe et al. 2022)

Difference between modified and non-modified Sun model

Peak in the speed of sound profile which
could help reproducing helioseismology
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* Next steps

- Extension to 3D

Preliminary results for a solar model show similar structures with penetrating "plumes”
(Vlaykov, et al. in prep)

Visualisation of radial velocity for an arbitrary angle ¢ (5133)
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- Analysis of overshooting depths for pre-MS and MS solar-like models
(Vlaykov, et al. in prep) and of Red Giant Branch stars (Pratt et al. in prep)

- Impact of rotation (and magnetic field) (Viaykov, Guillet, et al. in progress)



2) Study of the convective core of massive stars

e 2D survey of convective penetration as a function of stellar mass: 3 M. - 20 Mo
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o Use of statistical approach of extreme penetrating flows to determine the extent of the
overshooting layer as a function of stellar mass

Visualisation of radial velocity for 10 M.
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- Distribution of maximum depths of penetrating convective flows Imax(t)

- Time average of Inax provides an effective width of the overshooting layer
m can be used to characterise the extent of mixing on the long term dov = < Imax(t) >t
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w Pioneering analytical model of Zahn (1991)
First order estimate of the deceleration of a convective downdraft in a nearly
adiabatically stratified penetration layer:
1/2 dv2/dz =g 6plp « g 6T/T

— Estimate of a penetration distance Lp < L12 (rconv/Hp)1/2



= Application of our scaling relationship to stellar evolution models

dov/Hpc = 3.05 X 1073 X (L/Lo)'? X (reony/Hp.cB)Y* + 0.02

Comparison of tracks with Milky Way stars from Castro et al. (2014)
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Conclusions

Generalised approach with MUSIC to address convective boundary mixing for
envelopes (downward overshooting) and cores (upward overshooting)

v  Convective envelopes:
+f Artificial enhancement of Lsiar should be taken with caution

» These experiments reveal a local heating in the penetration region
b solar modelling problem

v  Convective cores:
€ Preliminary scaling found: dov < L3 (rconv/Hp)1/2 consistent with
observations suggesting dov T Mstar

s But first predictions (based on ZAMS cores) seem to

underestimate dov
5 Effect of rotation? MHD??
5 b Development of double-diffusive instabilities?



