Some inputs and developments of Cestam

Yveline Lebreton

LESIA - Paris-Meudon Observatory

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Opacity

 $\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla_{\rm rad, conv, cond}$

 $\Rightarrow \text{ radiation/conduction } \nabla = \frac{3}{16\pi acG} \frac{\rho}{\kappa} \frac{P}{T^4} \frac{L}{m} \text{ with } \kappa^{-1} = \kappa_{rad,Ross}^{-1} + \kappa_{cond}^{-1}$

Several opacity table sets have to be patched

- * Envelope : WICHITA (Ferguson et al. 04-...) include molecules and grains
- ★ Interior :

ightarrow pre He-burning (Z = Z_{ini}) : OPAL1 (Iglesias+ 96), OP (Seaton+92)

Yveline Lebreton

New inputs to Cestam

Opacity

Several opacity tables sets have to be patched

- \star Envelope : Ferguson et al. (04) ; include molecules and grains
- ★ Interior :

 \rightarrow pre He-burning (Z = Z_{ini}) : OPAL1 (Iglesias+96), OP (Seaton+92)

- → He-burning (C, O enhancements) OPAL2 (Iglesias+96, Boothroyd 07) Cestam: OPAL2 currently under test
- * Conduction (Cassisi, Pothekin+07)

Opacity

Several opacity tables sets have to be patched

- \star Envelope : Ferguson et al. (04) ; include molecules and grains
- ★ Interior :

 \rightarrow pre He-burning (Z = Z_{ini}) : OPAL1 (Iglesias+96), OP (Seaton+92)

- → He-burning (C, O enhancements) OPAL2 (Iglesias+96, Boothroyd 07) Cestam: OPAL2 currently under test
- * Conduction (Cassisi, Pothekin+07)

Preparation and implementation in Cestam

- * one single table covers all evolutionary stages (except He-burning)
- \star interpolations/reasonable extrapolations on the same (T, log R, X, Z) grid
- \star smooth blend in overlapping regions
- * pipeline in Fortran for new table construction should be made available

Solar mixture

Any change requires new opacity tables

- \rightarrow Inferred from theory, lab experiments, and observations
 - \star observations : solar photosphere, meteorites, ISM
 - \star 3D model atmospheres
 - ★ up-dated atomic data
- ightarrow Individual abundances $Z_{i,\odot}$, global $(Z/X)_{\odot}$, isotopic ratios

Yveline Lebreton

Atelier Codes, Meudon, 22-06-27 4 / 13

Opacity and solar mixture

Several sets of opacity tables available in Cestam

Mixture and tips used to get the OPAL-OP opacity tables

 Individual abundances: photospheric or meteoritic Either full photospheric

or photospheric for volatile (C, N, O, Ne) and meteoritic for refractory (Mg, Si, S, Fe).

★ Elements not explicitly taken into account by OPAL-OP Their abundances are shared by their nearest neighbors (by atomic number) in such a way as to conserve both number of particles and mean molecular weight (Iglesias+1991)

Opacity and solar mixture

Several sets of opacity tables available in Cestam

Mixture and tips used to get the OPAL-OP opacity tables

 Individual abundances: photospheric or meteoritic Either full photospheric

or photospheric for volatile (C, N, O, Ne) and meteoritic for refractory (Mg, Si, S, Fe).

 * Elements not explicitly taken into account by OPAL-OP
 Their abundances are shared by their nearest neighbors (by atomic number) in such a way as to conserve both number of particles and mean molecular weight (Iglesias+1991)

Cestam: a bunch of opacity tables available

- * Presently used Asplund, Amarsi, Grevesse (2021)
- * Tables still used for comparison purposes
 Grevesse & Noels (93), Grevesse & Sauval (98), Asplund+ (09)
- \star Old outdated tables still available Anders & Grevesse (89), Asplund et al (05), α -elements Chaboyer (95)
- \star To be prepared for PLATO? Magg et al. (2022)

Atmosphere: boundary conditions for the interior Implementation of 1D convective model atmosphere grids

A set of grids

* **ATLAS9** for **GS98** mixture (Kurucz 91, Castelli+02) $T_{\text{eff}} \in [3500, 7000]K; \log g \in [1, 5], [Fe/H] \in [-1., +0.2]; [\alpha/Fe] = 0.0$

* MARCS for Gustafsson+08 mixture

 $T_{\rm eff} \in [2800, 6500] K; \log g \in [-0.75, 6.0], [{\rm Fe}/{\rm H}] \in [-1., +0.5]; [\alpha/{\rm Fe}] \in [0.0, 0.4]$

* **PHOENIX-BT-Settl** for **AGSS09** mixture (Allard+11)

 $T_{\rm eff} \in [2500, 70000] \textit{K}; \log g \in [3, 5], [{\rm Fe}/{\rm H}] \in [-0.75, +0.5]; [\alpha/{\rm Fe}] \in [0.0, 0.4]$

Atmosphere: boundary conditions for the interior Implementation of 1D convective model atmosphere grids

A set of grids

* **ATLAS9** for **GS98** mixture (Kurucz 91, Castelli+02) $T_{eff} \in [3500, 7000]K; \log g \in [1, 5], [Fe/H] \in [-1., +0.2]; [\alpha/Fe] = 0.0$

* MARCS for Gustafsson+08 mixture

 $\mathcal{T}_{\rm eff} \in [2800, 6500] \\ \\ \mathcal{K}; \log g \in [-0.75, 6.0], [{\rm Fe}/{\rm H}] \in [-1., +0.5]; [\alpha/{\rm Fe}] \in [0.0, 0.4] \\ \\$

* **PHOENIX-BT-Settl** for **AGSS09** mixture (Allard+11)

 $T_{\rm eff} \in [2500, 70000] \text{K}; \log g \in [3, 5], [Fe/H] \in [-0.75, +0.5]; [\alpha/Fe] \in [0.0, 0.4]$

Method

- * Extract $T(\tau)$ -laws, density and pressure values from files game to play to find relevant information and build tables with no gaps.
- \star Cestam: get $T(au),
 ho_{\mathrm{ext}}$

5 parameters interpolation: $T_{
m eff}, \log g, [{
m Fe}/{
m H}], [lpha/{
m Fe}], au$

Currently under final validation

Atmosphere: near-surface effects for oscillation frequencies 1D stellar models plus adiabatic oscillation codes do not fit obs

 $\nu_{\rm mod} > \nu_{\rm obs} \rightarrow$ the higher the frequency, the higher the discrepancy.

- * Structural effects: convection $\rightarrow P_{turb}$ rises upper layers $\rightarrow \nu$ decreases
- * Modal effects: $\tau_{\rm th} \sim \Pi_{\rm osc} \rightarrow$ non adiabaticity (Sonoi, Belkacem, Dupret+17)

Different 1D atmospheric boundary conditions

Yveline Lebreton

Internal structure equations

 $\begin{aligned} \frac{\partial r}{\partial m} &= -\frac{1}{4\pi r^2 \rho} & \text{mass conservation} \\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} + \frac{\Omega^2}{6\pi r} & \text{hydrostatic equilibrium} \\ \frac{\partial L}{\partial m} &= \epsilon_{\text{nuc}} - \epsilon_{\nu} - \frac{\partial U}{\partial t} + \frac{P}{\rho^2} \frac{\partial \rho}{\partial t} & \text{energy conservation} \\ \frac{\partial T}{\partial m} &= -\frac{GmT}{4\pi r^4 P} \nabla \text{ with } \nabla = \nabla_{\text{rad}}, \nabla_{\text{conv}}, \nabla_{\text{cond}} & \text{energy transport} \\ \text{Radiative transport } \nabla_{\text{rad}} = \frac{3}{16\pi acG} \kappa \frac{P}{T^4} \frac{L}{m} \\ \\ \hline \mathbf{Evolution} \quad \left(\frac{\partial X_i}{\partial t}\right) = \left(\frac{\partial X_i}{\partial t}\right)_{\text{nuc}} + \left(\frac{\partial X_i}{\partial t}\right)_{\text{transport}} & \text{with } \left(\frac{\partial X_i}{\partial t}\right)_{\text{nuc}} = \rho A_i \sum_{jk} \left(r_{jk}^i - r_{ij}^k\right) \end{aligned}$

Internal structure equations

 $\frac{\partial r}{\partial m} = -\frac{1}{4\pi r^2 \rho}$ $\frac{\partial L}{\partial m} = \epsilon_{\text{nuc}} - \epsilon_{\nu} - \frac{\partial U}{\partial t} + \frac{P}{\rho^2} \frac{\partial \rho}{\partial t}$ $\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla \text{ with } \nabla = \nabla_{\text{rad}}, \nabla_{\text{conv}}, \nabla_{\text{cond}}$ Radiative transport $\nabla_{\text{rad}} = \frac{3}{16\pi acG} \kappa \frac{P}{T^4} \frac{L}{m}$ Evolution $\left(\frac{\partial X_i}{\partial t}\right)_{\text{rad}} = \rho A_i \sum_{jk} \left(r_{jk}^i - r_{ij}^k\right)$

mass conservation energy conservation energy transport

Essential input physics

- \star Extended nuclear reaction network for He-burning and beyond \checkmark
- \star Neutrino losses (plasma u and photoneutrinos) \checkmark
- ★ Mass loss : Reimers (75), Schröder & Cuntz (05), Blöcker (95) ✓
- \star Conductive opacities (Cassisi et al. 2007) \checkmark
- * Opacity: C & O enhancements, He-burning (Iglesias+95) under test

Integration variables

* Standard: optimal choice (to avoid singularities)

$$\xi = \ln P, \ \eta = \ln T, \ \mu = (M/M_{\odot})^{\frac{2}{3}}, \ \zeta = (R/R_{\odot})^{2}, \ \lambda = (L/L_{\odot})^{\frac{2}{3}}, \ \gamma = \ln \rho$$

* Change of variable for evolved stages $(L < 0) \checkmark$ $\xi = \ln P, \ \eta = \ln T, \ \mu = (M/M_{\odot})^{\frac{2}{3}}, \ \zeta = (R/R_{\odot})^{2}, \ \lambda = (L/L_{\odot})$

Integration variables

* Standard: optimal choice (to avoid singularities)

 $\xi = \ln P, \ \eta = \ln T, \ \mu = (M/M_{\odot})^{\frac{2}{3}}, \ \zeta = (R/R_{\odot})^{2}, \ \lambda = (L/L_{\odot})^{\frac{2}{3}}, \ \gamma = \ln \rho$

* Change of variable for evolved stages $(L < 0) \checkmark \xi = \ln P, \ \eta = \ln T, \ \mu = (M/M_{\odot})^{\frac{2}{3}}, \ \zeta = (R/R_{\odot})^{2}, \ \lambda = (L/L_{\odot})$

Choice of the mesh distribution (Eggleton 1971)

- ★ Ensure variables $f^{(i)}$ do not vary by large amount from shell k to k+1→ minimize $\sum_{k=2}^{N} \sum_{i} [f_{k}^{(i)} - f_{k-1}^{(i)}]^{2}$
 - \rightarrow variational problem $\delta \int_0^{M_\star} \sum_i (\frac{df^i}{dm})^2 \frac{dm}{dq} dm = 0$ with $q \in [0,1]$ and $q_{i+1} q_i = C$

 \rightarrow solution : $\frac{dq}{dm} = \phi \left\{ \sum_i (\frac{df^i}{dm})^2 \right\}^2$ and $\frac{d\phi}{dm} = 0$

* Practically in Cestam (based on P. Morel's experience) $f^{(1)} = c_P \ln P + c_T \ln T + c_M \mu + c_L \lambda$ and $f^{(i)=0,i\neq 1}$ caution: requires that $f^{(1)}$ is strictly monotonic

Evolved stages: towards the He-flash HR diagram

Evolved stages: towards the He-flash Temperature profile evolution

 $f^{(1)} = c_P \ln P + c_T \ln T + c_M \mu + c_L \lambda$ can be non monotonic

Evolved stages: towards the He-flash Luminosity profile

 $f^{(1)} = c_P \ln P + c_T \ln T + c_M \mu + c_L \lambda$ can be non monotonic

Mesh adaption : work in progress!

Thank you for your attention