

the PLATO Solar-like Light-curve Simulator (PSLS) https://psls.lesia.obspm.fr

Réza Samadi and the members of the DPA-WG

special dedications: Daniel, Alexis, Emmanuel

PSLS: fiche d'identité

- Generate realistic PLATO L1 light-curves for solar-like pulsators (including RG)
- Include: stochastically-excited oscillations ; rotational splitting, stellar granulation background, activity, planetary transit, white noise and instrumental systematic errors
- Applications:
 - Stellar science performance study and consolidation of the science case
 - Hare and Hounds exercises
 - PSM validation of the light-curve generation process (\rightarrow L1)
- Developed in Python (3.5 and higher)
- Paper: Samadi et al., 2019, A&A

LESIA

Website: https://psls.lesia.obspm.fr

Outline

- The stellar components
- The instrumental components

The stellar components

• The instrumental components

General principle

Model of the expected PSD : $\overline{P}(v) = A(v) + G(v) + O(v)$

A: activity ; G : granulation ; O : Oscillation spectrum

Simulation of the stochastic nature of the simulated phenomenon (Anderson et al, 1990's approach):

 $F(\mathbf{v}) = \sqrt{\overline{P}(\mathbf{v})} (U + iV)$

U and V : two Normal distribution ; Hypothesis : uncorrelated phenomenon

Simulated ligth-curve : inverse Fourier transform of F(v) $P(v) = |F(v)|^2 = \overline{P}(v) \quad (U^2 + V^2)$ Simulated PSD :

LESIA

Granulation spectrum

Two components (pseudo-lorentzian):

$$G(\mathbf{v}) = \sum_{i=1,2} \frac{h_i}{1 + (2 \pi \tau_i \mathbf{v})^{\alpha_i}}$$

h_i: height(s) τ_i: characteristic time(s) α_i : slope(s)

Origin of the two components not well established

Following Kallinger et al (2014) :

LESIA

• Slopes fixed (=4)

bservatoire

- $h_{_{i}}$ and $\tau_{_{i}}$ from scaling relations function of $\nu_{_{max}}$

Oscillation spectrum

Two types of oscillation spectra:

- Universal Pattern (UP, Mosser et al 2010) with mixed-modes and splitting \rightarrow for red-giant stars
- Set of theoretical oscillation frequencies derived from a pulsation code (ADIPLS) \rightarrow for dwarf and sub-giant stars

$$O(\mathbf{v}) = \sum_{i=1,N} L_i[\mathbf{v}]$$
Resolved mode:

$$L_i(\mathbf{v}) = \frac{H_i}{1 + (2(\mathbf{v} - \mathbf{v}_i)/\Gamma_i)^2}$$

$$L_i(\mathbf{v}) = \frac{\pi \Gamma_i H_i}{2 \delta \mathbf{v}} \operatorname{sinc}^2[\pi(\mathbf{v} - \mathbf{v}_i)]$$

$$h_i: \text{ mode height}$$

$$\mathbf{v}_i: \text{ mode frequency}$$

$$\Gamma_i: \text{ mode linewidth}$$

Universal pattern

Following Mosser et al (2011)

$$\nu_{n,\ell} = n + \frac{\ell}{2} + \varepsilon(\Delta\nu) - d_{0\ell}(\Delta\nu) + \frac{\alpha_\ell}{2} \left(n - \frac{\nu_{\max}}{\Delta\nu}\right)^2 \Delta\nu + \delta_{n,\ell}$$

Additional term for dipole modes, asymptotic gravity-mode spacing (Mosser et al 2012)

$$\delta_{n,\ell} = \frac{\Delta\nu}{\pi} \arctan\left[q \tan\pi \left(\frac{1}{\Delta\Pi_1\nu_{n,\ell}} - \epsilon_g\right)\right]$$

Mode amplitudes and line-widths:

Gaussian envelope

$$G(v) = H_{max} \exp\left[\frac{-(v - v_{max})^{2}}{\delta v_{env}^{2}/4 \ln 2}\right]$$

$$H_{max} = \alpha v_{max}^{-2.38}$$
(Mosser et al 2013,
SF2A)

$$\Gamma_{max} = \Gamma_{0} \left(\frac{T_{eff}}{4800 K}\right)^{10.8}$$
(Belkacem 2012,
SF2A)
P. Samadi et al. PSLS 14 May 2020

Universal pattern

Mode characteristics

Theoretical adiabatic frequencies : as given by ADIPLS

Splitting : constant (Ledoux's constant from ADIPLS)

Surface effects :

Modified lorentzian component (Sonoi et al 2015), involved 2 free input parameters (a,b), derived as a function of T_{eff} and log g from corresponding scaling relation

Amplitudes : observationnal scaling relation from Corsaro et al (2013)

Line-widths : observationnal scaling relation from Appourchaux et al (2012)

LESIA

A typical PLATO target (here noise free...)

- Activity component: Lorentzian function (α =2) ; users specify its characteristic time (τ) and amplitude (σ)
- Planetary transit: based on Mandel & Agol (2002) equations ; users specify typical transit parameters (radius, period, distance, and orbital angle)

The PLATO Solar-like Light-curve Simulator (PSLS)

16 Cyb B (KIC 12069449): observed by PLATO at V = 10

- The stellar components
- The instrumental components

The mission

- Multi-telescope concept
- 2 "fast" (2.5 seconds cadence) cameras used as star trackers by attitude and orbit control system
- 24 "normal" (25 seconds cadence) cameras for the core science
- Full field of view 2232 deg² (almost 20x that of Kepler)
- 2 long pointings of 2 years each
- Possible extension: step and stare phase $\rightarrow \sim 50$ of the sky
- Instrument designed for 8 years

LESIA

oservatou

The instrument

ZCAM

Baffle

Tube

Bipod

XCAM

TOU

- Each camera has:
 - 12 cm diameter pupil

LESIA

- 1037 deg² field-of-view
- 4 CCDs (45104510 18 pixels each)
- Plate scale: 15 arcsec/pixel
- 500-1000 nm spectral range
- 80 cm height, 30 cm diameter, 20 kg

High SNR, low stellar contamination and stability !!

MLI

FPA

Star samples

Telemetry must be shared between the 26 cameras !

 \rightarrow Limited number of imagettes

→ for most of the targets: photometry must be extracted on-board

→ ~ 250k stars
 → sample P5 +
 guest program
 (about 40k light curves)

LESIA

bservatoire

		SAMPLE 1 (P1)	SAMPLE 2 (P2)	SAMPLE 4 (P4)	SAMPLE 5 (P5)
Stars		≥ 15 000 (GOAL 20 000)	≥ 1000	≥ 5000	≥ 245 000
SPECTRAL TYPE		Dwarf and subgiants	Dwarf and subgiants	M DWARFS	DWARF AND SUBGIANTS
LIMIT V		11	8.2	16	13
RANDOM NOISE (PPM IN 1 HOUR)		34	34	800	
OBSERVATION PHASE		LOP	LOP	LOP	LOP
SAMPLING TIME	INITIAL MEASUREMENT	-	-	-	≤ 600
	CENTROID MEASUREMENTS	-	-	-	≤ 50 FOR 5% OF TARGETS
	TRANSIT OVERSAMPLING			•	≤ 50 FOR 10% OF TARGETS
	IMAGETTES	25	2.5	25	25 FOR > 9000 Targets
WAVELENGTH		500-1000 nm	500-1000 nm	500-1000 nm	500-1000 nm

Photometry extraction methods

PSF fitting photometry

STAR IMAGE

$I_{i,j}$

LESIA

Aperture (mask) photometry (on-board)

MODELLED $\hat{I}_{i,i} = a \cdot P_{i,i}(x_c, y_c) + b$ **IMAGE:** $\chi^2 = \sum_{i=1}^{\infty} \frac{\left(I_{i,j} - \widehat{I}_{i,j}\right)^2}{\sigma^2}$

"Extended" window: only useful pixels outside the standard 6x6 imagette are downloaded together with the 6x6 imagette

Weighted Gradient Mask (global optimal NSR) Weighted Gaussian Mask (sub-optimal NSR)

Binary Mask (narrower)

Thermo-elastic distortion

• Up to 0.4 pixel/3 months

LESIA

servatoire

Differential aberration

- Unavoidable relativistic effect
- Up to 0.9 pixel/3 months

Long-term star drift

 \rightarrow up to 60% reduction in the star intensity (in 3 months) !

Microscanning and PSF

"Microscanning" technique:

- Series of imagettes acquired during a imposed slow motion of the satellite (pure translation → variations of the transverse angles only)
- Coupled with an **inverse technique**: reconstruction of the PSF at different positions across the field of view

(credit: D. Reese)

LESIA

Leader: Daniel Reese (WP 321)

PSF and light-curve correction

Working resolution: 1/20 pixel (interpolated at 1/128 pixel)

ľ

Charge transfer inefficiency

Electrons captured by traps (during the charge transfers) and released after a while:

- Photon-electrons are **lost** (released outside the mask)
- Image are distorted by the trailing

Traps generated by proton impacts ; their number increased during mission life

CTI and long-term drift: differential CTI effect

The PLATO Solar-like Light-curve Simulator (PSLS)

PSLS simulations include:

- Solar-like oscillations
- Granulation background
- Activity
- White noise
- Instrument systematic errors

Systematic errors (individual camera and averaged over 24 cameras)

Updated simulations

- Based on Gaia field (I.e with relastic contaminations)
- Include charge diffusion, more realistic inverted PSF, centroid errors, ...

P5 sample (aperture mask method)

P1 sample

IPRNU = Intra Pixel Non-Uniformity

Wavelength (nm)	Peak-to-peak IPRNU (%)	Weight (%)
500	1.4	20.0
633	1.2	26.7
700	2.1	25.9
800	6.1	18.3
900	16.6	7.8
1000	36.1	1.4

Credit: Carsten Parpoth (DLR)

Weights depend on transmittance, QE, and G0 spectrum

• About 4% overall IPRNU peak-to-peak

Residual light-curve:

R. Samadi et

The configuration file

PLATO Solar-like Light-curve Simulator (PSLS) configuration file (V 1.2)

LESIA

```
# Observation conditions
Observation:
  Duration : 730. # [days]
  MasterSeed: 1704040900 # Master seed of the pseudo-random number generator
# Instrument parameters
Instrument:
  Sampling : 25. # Sampling period of each camera [s]
  IntegrationTime : 21. # Integration time [s]
  NGroup : 4 # Number of camera groups (1 -> 4)
  NCamera : 6 # Number of cameras per group (1 -> 6)
  TimeShift : 6.25 # Time shift between camera groups [s]
  RandomNoise:
    Enable: 1
    Type: PLATO SIMU # either 'User' or 'PLATO SCALING' or 'PLATO SIMU'.
    NSR : 73.
  Systematics:
    Enable : 1
    Table : PLATO systematics BOL P1 V1.npy
    Version: 1
    DriftLevel: low # Amplitude of the drift: 'low', 'medium', 'high' or 'any'. Applicable only for Version>0
```


LESIA

The configuration file (2)

Stellar parameters Star: Mag: 10. # Magnitude **ID**: 12069449 # star TD ModelDir: # Directory containing the single models or the grid **ModelType:** single # Type of model: 'grid' or 'single' or 'UP' **ModelName:** 0012069449 # Name of the input model, to be specified when ModelType = 'single'. ES: ms # Evolutionary status: 'ms' for the main-sequence phase, 'sq' for the sub-giant phase, 'rg' for redgiants (Red Giant Branch or clump stars) **Teff**: 5750. # Effective temperature [K] Logg : 4.353 # Surface gravity, ignored for the UP **SurfaceRotationPeriod :** 0. # Surface rotation period [days], not used with the UP **CoreRotationFreg**: 0. # Core rotation frequency [muHz] [rad/s], used only with the UP **Inclination :** 0. # Inclination angle [deg.] # Oscillations parameters **Oscillations:** Enable: 1 **numax** : 179.3 # frequency at maximum power [muHZ], used only with the UP delta nu : 13.68 # Mean large separation [muHz], used only with the UP scaling relation **DPI**: 80.58 # Asymptotic values of the gravity mode period spacing [s], used only with the UP modes to be included **q**: 0.15 # Mixed mode coupling factor, used only with the UP **SurfaceEffects:** 1 # Include near-surface effects in mode frequencies, not implemented for the UP

The configuration file (3)

Activity : Enable: 1 Sigma : 40. # Amplitude of the activity component [ppm] Tau : 0.2 # Time-scale of the activity component [days] Granulation : Enable: 1 # Transit parameters Transit : Enable: 0 PlanetRadius : 0.5 # in jupiter radii OrbitalPeriod : 10. # in days PlanetSemiMajorAxis : 1. # in A.U. OrbitalAngle : 0. # in deg LimbDarkeningCoefficients: [0.25,0.75]

