Artist Rendition of Solar Wind Created by: K. Endo

Les ondes de choc SANS collision : apport de la Simulation numérique

Philippe Savoini

Les ondes de choc SANS collision

Les ondes de choc

origine écoulement supersonique ® obstacle

Les ondes de choc SANS collision

Les ondes de choc

Les ondes de choc

nature

Onde

de

cho

Onde de choc "usuelle"

Cône de Mach

avion supersonique

Mécanismes de dissipation : les collisions

Onde de choc "SANS" collision

Exemple : choc en amont de la Terre Mécanismes de dissipation : Interactions champs-particules

Effet de dispersion

Les ondes de choc SANS collision

າລພວ

résultat de 3 processus distincts

Onde de choc

un problème multi-échelles !!

convertisseur d'énergie dirigée → thermique → accélération

Les ondes de choc SANS collision

Les ondes de choc SANS collision

Les onde

Les ondes de choc SANS collision

choc AVEC collisions ≡ un horizon

supersonic flow

Aucune propagation en amont !! → pas de particules

→ pas d'ondes sonores

Les ondes de choc SANS collision

mécanismes d'accélération de base

(transfert d'énergie via les champs E et B)

inertie des particules

Champ E

Gain d'énergie (accélération)

mouvement des particules → champ de convection

 $\overrightarrow{E} = -\overrightarrow{u} \times \overrightarrow{B}$

[Treuman et Jaroschek, 2008]

miroir magnétique → Fermi d'ordre 1 («effet» raquette de tennis)

collisions stochastiques → Fermi d'ordre 2

Les ondes de choc SANS collision

→ meso-échelles :

accélération des ions

→ meso-échelles :

accélération des ions

accélération diffusive

Spectre d'énergie (~1 UA)

Accélération diffusive

→ Loi de puissance: $\frac{dJ}{dE}$

$$\frac{1}{E} \propto E^{-\alpha} \qquad (\alpha = \frac{\varpi + 2}{\varpi - 1})$$

- → quand M_A>10, $\varpi \approx 4$ alors $\alpha \approx 2$
- → dJ/dE a E⁻² bon accord avec le spectre NON thermique
- → t_{acc} réduit : DE ***** en secondes (ou semaines)
- → plus de problème d'accélération initiale

données de ACE, SAMPEX et GOES-

emc 🕌

Les ondes de choc SANS collision

