

Les ondes de choc

origine écoulement supersonique ® obstacle

Les ondes de choc

origine écoulement supersonique ® obstacle

- → accumulation des particules devant l'obstacle
- → formation d'un front (chasse-neige ...)
- → compression irréversible du milieu
- → n /, P/, T/ → entropie / (phénomènes irréversibles)

Les ondes de choc

nature

Onde

Onde de choc "usuelle"

 $D_{choc} \sim l_{lpm} \sim 10^{-9} m$ avion supersonique

Mécanismes de dissipation : les collisions

Exemple: choc en amont de la Terre Mécanismes de dissipation: Interactions champs-particules

Effet de dispersion

existence

choc coronal

onde de choc

CME

existence

existence

ondes de choc

Les ondes de choc lointaines

Chocs radiatifs

Rothenflug et al., 20041

Supernova: SN1006

nature

Etat du plasma de part et d'autre du choc: **Equations de Rankine-Hugoniot**

Possible SANS collision?

Propriétés intrinsèques de l'onde de choc ??

résultat de 3 processus distincts

Onde de choc

raidissement NON LINEAIRE

d'un gradient (propagation idéale)

=> excitation des petites |

onde non linéaire formation fort gradient

$$nm\left[\frac{\partial \overrightarrow{u}}{\partial t} + (\overrightarrow{u} \cdot \overrightarrow{\nabla})\overrightarrow{u}\right] = \mu \nabla^2 \overrightarrow{u} - \overrightarrow{\nabla} p$$

formation de trains d'ondes amont-aval

résultat de 3 processus distincts

 $\lambda_{gradient} \approx \lambda_{dispersion}$

Onde de choc

 $\lambda_{gradient} pprox \lambda_{dissipation}$

raidissement NON LINEAIRE

d'un gradient (propagation idéale)

=> excitation des petites |

onde non linéaire formation fort gradient

$$nm\left[\frac{\partial \overrightarrow{u}}{\partial t} + (\overrightarrow{u} \cdot \overrightarrow{\nabla})\overrightarrow{u}\right] = \mu \nabla^2 \overrightarrow{u} - \overrightarrow{\nabla} p$$

effets dispersifs

=> évacuation des

effets dissipatifs

 \Rightarrow amortissement des λ

résistivité «anormale» viscosité

«anormal»

Soliton+dissipation

→ banlieue proche : mesures in-situ (AMPTE, ISEE,, CLUSTER-II, ...)

[Tsurutani and Rodriguez, 1981]

Structure multi-échelles :

petites échelles :

→ échelles dissipatives

(Nombre de Mach ≡ énergie à dissiper)

Nombre de Mach Alfvénique :

M_A=V_{vent solaire}/V_A

une valeur critique : $M_A^* \sim 3$

 $M_A < M_A^* \rightarrow chocs sous-critiques$

→ échelles résistives (instabilités)

 $M_A > M_A^* \rightarrow$ chocs supercritiques

→ échelles «visqueuses»

Echelles dissipatives : dissipation «résistive»

Echelles dissipatives : dissipation «résistive»

Instability	Nature of wave mode	Typical wavelength	Frequency and growth rate
Ion-ion streaming instability	Magnetosonic waves	$k \sim \frac{\omega_e}{c}$	$\gamma \sim \Omega_{\rm r}$
Kinetic cross- field streaming instability	Whistler mode waves with oblique propagation	$k \gtrsim \frac{\omega_{\text{LH}}}{V_0}$	$\begin{array}{l} \omega \simeq \omega_{\mathrm{LH}} \\ \gamma > \Omega_{\mathrm{r}} \\ \omega \simeq \omega_{\mathrm{LH}} \\ \gamma > \Omega_{\mathrm{r}} \end{array}$
Lower-hybrid- drift instability	Lower hybrid waves and drift waves	$k \sim \frac{\omega_{\rm LH}}{V_0}$	$ω ≃ ω_{LH}$ $γ ▶ Ω_{r}$
	Doppler-shifted whistler mode	$k > \frac{\omega_{\text{LH}}}{V_0}$	$\omega \simeq \omega_{LH}$ $\gamma \gg \Omega_{r}$
Ion-acoustic instability	Ion waves	<i>kλ</i> _D ≲1	$\omega \lesssim \omega_t$ $\gamma > \Omega_t$
Electron- cyclotron	Doppler-shifted Bernstein waves	kλ _D ≲ 1	$\omega \simeq n\Omega_e$ $\gamma > \Omega_i$

Whistler-mode

lel propagation

waves with paral-

région du front de choc

Whistler insta-

bility

 $\omega \triangleleft \Omega$

 $\gamma \triangleright Q_i$

[Wu et al., 1984]

espace des phases

Structure multi-échelles :

petites échelles :

→ échelles dissipatives

(Nombre de Mach ≡ énergie à dissiper)

Nombre de Mach Alfvénique :

M_A=V_{vent solaire}/V_A

une valeur critique : $M_A^* \sim 3$

 $M_A < M_A^* \rightarrow chocs sous-critiques$

→ échelles résistives (instabilités)

 $M_A > M_A^* \rightarrow$ chocs supercritiques

→ échelles «visqueuses»

approche multi-échelles → impossible avec les satellites !!!
apport de la simulation numérique

Quelques exemples de résultats obtenus via la simulation numérique

→ Petites échelles :

la non-stationarité du choc

Données → **Simulation**

→ Meso échelles :

accélération des électrons

→ Grandes échelles :

dynamique des ions

Domaine Quasi-perpendiculaire

[Tsurutani and Rodriguez, 1981

Les ondes de choc SANS collision

→ Petites échelles :

la non-stationarité du choc

Les ondes de choc SANS collision

→ Petites échelles :

la non-stationarité du choc

- auto-reformation périodique du front
- $T\sim 1 t_{ci}$

Les ondes de choc SANS collision

→ Petites échelles :

la non-stationarité du choc

Données expérimentales

Les ondes de choc SANS collision

→ Petites échelles :

la non-stationarité du choc

Processus d'auto-reformation : pas si simple !!!!

- → existence d'autres mécanismes déclencheurs
- → existence aussi de mécanismes stabilisateurs

choc AVEC collisions ≡ **un horizon**

- → pas de particules
- → pas d'ondes sonores

→ meso-échelles :

accélération des particules

[Tsurutani and Rodriguez, 1981]

mécanismes d'accélération de base

(transfert d'énergie via les champs E et B)

inertie des particules → champ de charge d'espace

$$\overrightarrow{\nabla}E = \frac{\rho}{\epsilon_o}$$

mouvement des particules

→ champ de convection

$$\overrightarrow{E} = -\overrightarrow{u} \times \overrightarrow{I}$$

[Treuman et Jaroschek, 2008]

Gain d'énergie (accélération)

miroir magnétique → Fermi d'ordre 1 («effet» raquette de tennis)

collisions stochastiques

Données → Simulation

Les ondes de choc SANS collision

→ meso-échelles :

→ 2 populations distinctes

Données → Simulation

- → meso-échelles :
- accélération des électrons
- → 2 populations distinctes
- → Signature «cone de perte» : réflexion miroir

Données

→ Simulation

Les ondes de choc SANS collision

→ meso-échelles :

accélération des électrons

- → 2 populations distinctes
- → Signature «cone de perte» : réflexion miroir

Données

→ Simulation

Les ondes de choc SANS collision

→ meso-échelles :

accélération des électrons (

- → 2 populations distinctes
- → Signature «cone de perte» : réflexion miroir
- → Aucune signature caractéristique
 - : autres mécanismes ??

Données → Simulation

Les ondes de choc SANS collision

→ meso-échelles :

accélération des électrons

Champ E: un exemple

→ meso-échelles :

accélération des ions

Spectre d'énergie (~ 1 UA)

(Heliospheric particles)

données de ACE, SAMPEX et GOES-

→ Loi de puissance

$$\frac{dJ}{dE} \propto E^{-\gamma} \exp(-\frac{E}{E_o})$$

- \rightarrow E⁻¹
- → Spectre faible énergie(≤ qq MeV)
- \rightarrow t_{acceleration} $\leq 10 \text{ s}$

→ meso-échelles :

accélération des ions

downsti

accélération de dérive

Spectre d'énergie (~1 UA)
(Heliospheric particles)

données de ACE, SAMPEX et GOES-

upstream

Space

Données → Simulation

Les ondes de choc SANS collision

→ meso-échelles :

accélération des ions

accélération résonante («surf»)

→ accélération très efficace : $DE \ge 1000 E_i$

Spectre d'énergie (~ 1 UA) (Heliospheric particles)

données de ACE, SAMPEX et GOES-

Choc Quasi-perpendiculaire:

→ Ec ✓ MeV en 3 minutes

→ meso-échelles :

accélération des ions

accélération diffusive

Spectre d'énergie (~1 UA)

(Heliospheric particles)

données de ACE, SAMPEX et GOES-

Energy spectra Cosmic rays

- → Loi de puissance
- \rightarrow E⁻² ~ (-3)
- → Spectre de haute énergie (>> MeV)

Processus d'accélération universel

→ Les ondes de choc !!!

→ meso-échelles :

accélération des ions

→ meso-échelles :

accélération des ions

accélération diffusive

Spectre d'énergie (~1 UA)

(Heliospheric particles)

données de ACE, SAMPEX et GOES-

Accélération diffusive

→ Loi de puissance:
$$\frac{dJ}{dE} \propto E^{-\alpha}$$
 $(\alpha = \frac{\varpi+2}{\varpi-1})$

→ loi de puissance universelle :

 \rightarrow quand M_A>10, $\varpi \approx 4$ alors $\alpha \approx 2$

→ dJ/dE a E⁻² bon accord avec le spectre NON thermique

→ tacc réduit : DE ren secondes (ou semaines)

→ plus de problème d'accélération initiale

→ meso-échelles :

accélération des ions

→ grande-échelles :

le pré-choc ionique

Données → Simulation

Les ondes de choc SANS collision

→ grande-échelles :

le pré-choc ionique

(SLAM

Faisceaux alignés

Les ondes de choc SANS collision

→ grande-échelles :

le pré-choc ionique

soliton

Evidence of d'ions réfléchis

- FAB: Faisceaux alignés

CLUSTER mission observations

[Meziane et al., 2007]

- Réflexion spéculaire avec m =cte ou m ≠ cte

[Sonnerup, 1969; Schwartz et Burgess, 1984; Gosling et al., 1982]

- Ions de fuite (magnétogaine)

[Tanaka et al., 1983; Thomsen et al.]

- Diffusion des ions réfléchis par des fluctuations amont

[Giacalone et al., 1994]

par des fluctuation dans la rampe

[Kucharek et al., 2004; Bale et al., 2005]

- GPB: Faisceaux NON gyrotropique

23:36:09-23:36:13

- gyrating ions at the ramp

[Gurgiolo et al., 1981, 1983]

- Wave synchronisation

[Mazelle et al., 2003; Hamza et al., 2006]

- Beam-plasma Instability

[Hoshino and Terasawa, 1985]

November 1575 NO:00-1246-39

→ grande-échelles :

le pré-choc ionique

soliton

Evidence of d'ions réfléchis

- FAB: Faisceaux alignés

CLUSTER mission observations

Faisceaux alignés

[Meziane et al., 2007]

- Réflexion spéculaire avec m = cte ou $m \neq cte$

[Sonnerup, 1969; Schwartz et Burgess, 1984; Gosling et al., 1982]

- rons de ruite (magnetogame)

[Tanaka et al., 1983; Thomsen et al.]

- Diffusion des ions réfléchis par des fluctuations amont [Giacalone et al., 1994]

par des fluctuation dans la rampe

[Kucharek et al., 2004; Bale et al., 2005]

- GPB: Faisceaux NON gyrotropique

23:36:09-23:36:13

- gyrating ions at the ramp

[Gurgiolo et al., 1981, 1983]

- Wave synchronisation

[Mazelle et al., 2003; Hamza et al., 2006]

- Beam-plasma Instability

[Hoshino and Terasawa, 1985]

November 1979 240:00-1240:30

