

March 8th 2018 Laboratoire de physique des plasmas

What's new about magnetic helicity? Properties & potential impact on solar eruption prediction

É. Pariat¹,

¹ LESIA, Observatoire de Paris, PSL*, CNRS, Sorbonne Universités, U. D. Diderot

FLARE CAST

G. Valori², J.L. Leake³, F.P. Zuccarello⁴, K. Moraitis¹, L. Linan¹, M. Linton⁵, K. Dalmasse⁶, P. Démoulin¹ ²MSSL, University College London, UK ; ³NASA GSFC, Greenbelt MD, USA ⁴KU Leuven, Belgium ; ⁵NRL, Washington DC, USA ⁶IRAP, Univ. Toulouse, CNRS, UPS, CNES, France

Outline

- Context
- Magnetic helicity:
 - Definition
 - Properties
 - Measurements
- Magnetic helicity conservation in nonideal MHD
 - past experiments
 - new tests
- Magnetic helicity as an eruptivity proxy
- Conclusions

Solar coronal plasma

^{08/03/18 -} Séminaire du LPP - E. Pariat

Solar Eruptions

Space Weather Prediction

- Need to quantify and predict the **specific and cumulative impact** of solar activity on Earth.
- Necessary to understand the underlying physics of Sun-Earth relationships
- Key Questions:
 - Heliophysics problematic: if an eruption occurred:
 - Will it impact the Earth?
 - Will it create damages?
 - Solar physics problematic: will an eruption occur?
 - When will it occur?
 - Where does it occurs?
 - What are its properties?

08/03/18 - Séminaire du LPP - E. Pariat

(Schrijver et al. 09)

Magnetohydrodynamics (MHD) paradigm

- Fluid approximation valid for AR dynamics but some particle dynamics at small scales
 - Mean free path: 10³ -10⁵m < length scale of active region: 10⁶m 10⁸m
 - Collision time: 10⁻³ s to 1s < typical time scale of active region: 1 min 1 day
- Fully ionized (high T, low dens) → atmosphere made of plasma
- Quasi-neutral
 - Length scale >> Debye length,

~ 1 cm in the corona

- Non relativistic scales (v₀ << c)
 - Electric currents are induced by the magnetic field : Ampère Law

$$\mu_0 \mathbf{J} = \nabla \times \mathbf{B}$$

• • • •	T (K)	$n (m^{-3})$	P (Pa)
Intérieur $(z \approx -10 \text{ Mm})$	$7 imes 10^4$	$6 imes 10^{26}$	7×10^8
Photosphère $(z=0)$	5800	$9 imes 10^{22}$	7×10^3
$\begin{array}{c} \text{Chromosphère} \\ (z=2 \text{ Mm}) \end{array}$	10^{4}	$5 imes 10^{16}$	2×10^{-2}
$\begin{array}{c} \text{Couronne} \\ (z \approx 50 \text{ Mm}) \end{array}$	2×10^6	2×10^{14}	2×10^{-3}

MHD equations

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{u}) = 0,$$
$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \frac{1}{\rho}\nabla(P + \underline{\tau}) = \frac{\mathbf{J} \times \mathbf{B}}{\rho} + \mathbf{g},$$
$$\frac{\partial(e)}{\partial t} + \nabla \cdot (e\mathbf{u}) + P\nabla \cdot \mathbf{u} = \nabla \cdot \mathbf{F}_r + \nabla \cdot \mathbf{F}_c + Q_{\text{Joule}} + Q_{\text{visc}},$$
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (\mathbf{R})$$

Lorentz force dominated medium

$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \mathbf{J} \times \mathbf{B} + g \mathbf{e}_z + \frac{1}{\rho} \nabla \cdot \tau$$

Lorentz force: 10⁻⁶ N.m⁻³

– B~0.01 T, L~10⁷

– Plasma pressure: 10⁻⁹ N.m⁻³

- P~10⁻² Pa, L~10⁷m

- Viscous stress & Advection: 10⁻¹⁰N.m⁻³
 - V~10⁵ m.s⁻¹, L~10⁷m, ρ ~10⁻¹³ kg.m⁻³
 - Gravity: 10⁻¹¹ N.m⁻³
 - g~280 m.s⁻², ρ ~10⁻¹³ kg.m⁻³

Ideal & non-ideal MHD

 $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (\mathbf{R})$

- For R=ηj; Magnetic Reynolds number:
 - Rm >> 1: Ideal MHD
 - Rm << 1: Resistive MHD</p>

$$\frac{\partial \mathbf{B}}{\partial t} - \mathbf{\nabla} \times (\mathbf{v} \cdot \mathbf{B}) = -\mathbf{\nabla} \times (\eta \mathbf{\nabla} \times \mathbf{B})$$

- Solar Corona:
 - $V_0 \sim 10^5 \text{ m s}^{-1}$, $\eta \sim 1 \text{ m}^2 \text{ s}^{-1}$, $L_0 \sim 10^7 \text{ m}$

$$\mathcal{R}_m = \frac{V_0 L_0}{\eta}$$

- Rm > 10¹²: ideal MHD is a very good approximation of the solar corona, for large scale structure
- Exception to the rule: generation of solar eruption
 - Non-ideal effect can be LOCALLY (scale < 1¹⁻³ m) important

vs. active regions scale (> 10^7 m)

Outline

- Context
- Magnetic helicity:
 - Definition
 - Properties
 - Measurements
- Magnetic helicity conservation in nonideal MHD
 - past experiments
 - new tests
- Magnetic Helicity as an eruptivity proxy
- Conclusions

Definition of Magnetic Helicity

$$H = \int_{\mathcal{V}} \vec{A} \cdot \vec{B} \, \mathrm{d}V \quad , \quad \vec{B} = \vec{\nabla} \times \vec{A} \leftarrow \begin{array}{c} \text{Magnetic} \\ \text{vector} \\ \text{potential} \end{array}$$

- Helicity of the magnetic field in MHD plasmas (Elsasser 56)
 - Current helicity: $\int_V \mathbf{B} \cdot \nabla \times \mathbf{B} d^3 x$,
 - Kinetic helicity: $\int_V \mathbf{u} \cdot \nabla \times \mathbf{u} d^3 x$,

Magnetic helicity: signed level of knotedness and twist of magnetic field lines

 Magnetic flux weighted Gauss Linking Number of pairs of magnetic field lines (Moffatt 1968)

$$L_{12} = -\frac{1}{4\pi} \oint_{1} \oint_{2} \frac{d\mathbf{x}}{d\sigma} \cdot \frac{\mathbf{r}}{r^{3}} \times \frac{d\mathbf{y}}{d\tau} d\tau d\sigma$$

$$H = -\frac{1}{4\pi} \int \int \mathbf{B}(\mathbf{x}) \cdot \frac{\mathbf{r}}{r^3} \times \mathbf{B}(\mathbf{x}') \ d^3x \ d^3x'$$

Magnetic twist and writhe

H=N Φ_{ax}^{2} N:nbr of turns, Φ_{ax} : axial flux

Magnetic helicity properties

Magnetic helicity is an *ideal MHD* invariant. For $E \perp B$: no dissipation \rightarrow magnetic helicity is conserved (Woltjer 58).

Time variations Surface Flux **Dissipation** $\frac{dH_m}{dt} = \int_{\partial V} \left(\mathbf{A} \times \frac{\partial \mathbf{A}}{\partial t} \right) \cdot d\mathbf{S} - 2 \int_{\partial V} (\mathbf{E} \times \mathbf{A}) \cdot d\mathbf{S} - 2 \int_{\partial V} \mathbf{E} \cdot \mathbf{B} \, d\mathcal{V}$

(Török et al. 05)

Magnetic helicity bounds the energy distribution • in the system:

 $\mu_0 \hat{E}(k) > k \hat{H}(k)$ (Frisch et al. 75)

Inverse helicity cascade: Helicity goes from small • to large spatial scales. (Frisch et al. 75, Alexakis et al. 06)

Gauge invariance of magnetic helicity

Gauge transformation of magnetic helicity:

$$H = \int_{\mathcal{V}} ec{A} \cdot ec{B} \; \mathrm{d}V$$

$$\mathbf{A'} \longrightarrow \mathbf{A} + \nabla \phi, \qquad \qquad H'_m = \int_V \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V + \int_V \nabla \phi \cdot \mathbf{B} \, \mathrm{d}V = H_m + \int_S \phi \mathbf{B} \cdot \mathrm{d}S$$

 Magnetic helicity is gauge invariant only for magnetically bounded systems:

 $\mathbf{B} \cdot \mathbf{dS} |_{\mathbf{S}} = 0$

- Strict definition of magnetic helicity useless for a large number of applications:
 - e.g. natural plasmas, like the solar corona have boundaries threaded by magnetic fields

Relative Magnetic Helicity

→ Useful quantity: Relative Magnetic Helicity: helicity of the studied field, B, relative to a reference field (Berger 84, Finn & Antonsen 85).

$$H_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V} \quad \text{(Finn \& Antonsen 85)}$$

with boundary condition : $(\mathbf{B}_p \cdot d\mathbf{S})|_{\partial \mathcal{V}} = (\mathbf{B} \cdot d\mathbf{S})|_{\partial \mathcal{V}} \qquad \nabla \times \mathbf{A} = \mathbf{B}$

 Gauge invariant provided that studied and reference fields share the same magnetic-flux distribution <u>on the whole boundary</u>.

Potential & Non Potential

 For a given distribution of a magnetic field on the boundary of a domain, there is an <u>unique</u> decomposition of the magnetic field in potential and non-potential field.

• Potential field:
$$B_p = \nabla \phi$$
, with $\hat{n} \cdot (B - B_p)|_{\partial V} = 0$.

- the potential field has the same normal distribution than the studied field <u>on the whole boundary</u>
- Non-potential field:
 - The non potential field "carry" all the electric currents of the studied field.
- Thomson theorem:

$$E_{mag} = E_{pot} + E_{free}$$

- Total magnetic energy is the sum of the mag. energy of the potential field and the "free" magnetic energy (mag. energy of the non-potential field)
- Observationally based assumption: during an eruption, B distribution does not change → Bp and Epot do not change → the energy source of an eruption is the free magnetic energy

Relative Magnetic Helicity

→ Useful quantity: Relative Magnetic Helicity: helicity of a studied field relative to a reference field (Berger 84, Finn & Antonsen 85).

$$H_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V} \quad \text{(Finn \& Antonsen 85)}$$

with boundary condition : $(\mathbf{B}_p \cdot d\mathbf{S})|_{\partial \mathcal{V}} = (\mathbf{B} \cdot d\mathbf{S})|_{\partial \mathcal{V}} \qquad \nabla \times \mathbf{A} = \mathbf{B}$

- Gauge invariant provided that studied and reference fields share the same magnetic-flux distribution <u>on the whole boundary</u>.
- Standard reference field is the potential field!

Outline

- Context
- Magnetic helicity:
 - Definition
 - Properties
 - Measurements
- Magnetic helicity conservation in nonideal MHD
 - past experiments
 - new tests
- Magnetic helicity as an eruptivity proxy
- Conclusions

Taylor conjecture

- Taylor relaxation conjecture: even in <u>non-Ideal MHD</u> magnetic helicity should be well conserved (Taylor 1974)
- Magnetic energy cascades to small scales where it is dissipated while helicity cascades to large scales (Ji et al. 95, Heidbrink & Dang 00).
- Volume over which reconnection develops is small: large scale twist/helicity is not affected (Berger 03).
- In resistive MHD, helicity dissipation is bounded and slow compared to energy dissipation (Berger 84, Berger 99)
 - Dissipation time of helicity in typical active region:~ several 100 year

$$\left|\frac{\mathrm{d}H}{\mathrm{d}t}\right|_{\mathrm{dis.}} \leq \sqrt{\frac{8\mu_0}{\sigma}W\left|\frac{\mathrm{d}W}{\mathrm{d}t}\right|}$$

Helicity conservation consequence in Tokamaks

• Relaxation in laboratory experiments: plasma relax to minimum energy state, i.e. linear force free field (LFFF) e.g. Bodin et al. 84, Taylor et al. 86, Yamada et al. 99

Tests on magnetic helicity Conservation

- Despites its potential importance, tests on Taylor's conjecture have been very limited!
 - Test on "relaxation" toward minimum energy state (LFFF): mixed results
 not direct test of magnetic helicity conservation, but of relaxation dynamics
- Laboratory experiments: difficult sampling of the full 3D magnetic field ; axisymmetric assumption (Ji et al. 95, Barnes et al. 86, Heidbrink et al. 00, Gray et al. 10)
 - Sawtooth relaxation: Δ H/H=1-5%; Δ E/E=5-10%
 - Sawtooth crash: ∆H/H=1%
- Numerical simulation: no test in general conditions, i.e. in 3D, active-like conditions, no periodicity ...

Helicity conservation & solar eruptions: concept

Magnetic helicity conservation is the "raison d'être" of CMEs:

- No helicity dissipation in the corona. The variation of helicity is only due to terms of flux (Berger and Field, 84) :
- No helicity creation either: no efficient dynamo
- Some helicity is constantly injected through the photosphere:
- <u>Hypothesis:</u> magnetic helicity cannot be infinitely stored in the corona
- Peruptions (CMEs) appear as a natural way to eject magnetic helicity (Rust 94, Low 96).

Helicity & solar eruption: observations

 Several observational studies have shown diverse indications that magnetic helicity can be tightly linked with enhanced eruptivity: (Nindos et al. 04, Labonte et al. 07, Park et al. 08, 10, Tziotziou et al. 12, ...)

Linking coronal & interplanetary physics

AR 7912, 14 Oct. 1995

after

CME

Data : Remote sensing but global

Magnetograms + coronal loops + extrapolation

In situ but local

Green et al. 07

Measurements of the 3 components of B + flux rope model

-> H_{Magnetic Cloud}

H conservation : $\Delta H_{corona} \sim H_{Magnetic Cloud}$?

- Clear qualitative link: same chirality / sign of helicity
- Rough quantitative agreement between AR & MC helicity
 - within large measurement imprecision

ICME	Solar source AR		Total
	Positive	Negative	
Positive	10	3	13
Negative	1	20	21
Total	11	23	34

(Mandrini et al. 2005, Luoni et al. 2005, Dasso et al. 2006, Nakwacki et al. 11, Cho et al. 13)

Helicity and magnetic reconnection

(Linton et al. 01)

08/03/18 - Séminaire du LPP - E. Pariat

(Del Soro et al. 10)

Outline

- Context
- Magnetic helicity:
 - Definition
 - Properties
 - Measurements
- Magnetic helicity conservation in nonideal MHD
 - past experiments
 - new tests
- Magnetic helicity as an eruptivity proxy
- Conclusions

Relative magnetic helicity conservation ?

- For most configuration in natural plasma, classical definition of helicity cannot be used!
- To study the conservation of magnetic helicity in general configurations
 study the conservation of relative magnetic helicity.

$$H_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V}$$
$$\nabla \times \mathbf{A} = \mathbf{B}$$

with boundary condition :

$$(\mathbf{B}_{\mathrm{p}} \cdot \mathrm{d}\mathbf{S})|_{\partial \mathcal{V}} = (\mathbf{B} \cdot \mathrm{d}\mathbf{S})|_{\partial \mathcal{V}}$$

Relative Magnetic Helicity: helicity of a studied field relative to a reference field (Berger 84, Finn & Antonsen 85).

Relative magnetic helicity estimations

- The computation of relative magnetic helicity is not straightforward:
 - Computation of reference field must be done imposing boundary conditions on the whole domain boundary.
 - Many previous methods assumed semi-infinite volumes while all existing datasets are bounded volumes: could lead to incorrect results (Valori et al. 11, 12) error in intensity, even in sign!
- Several methods recently developed on 3D cuboid system (Valori et al. 2016) $\nabla \cdot \mathbf{A} = 0$
 - Using Coulomb gauge:

Thalmann et al. 2011, Rudenko & Myshyakov 2011, Yang et al. 2013

- Simpler theoretical formulation
- Harder to implement numerically
- Using DeVore gauge (DeVore et al. 2000) : $A_z = 0$

Valori, Démoulin & Pariat 2012, Moraitis et al. 2014

- More complex theoretical formulation
- Simpler to implement numerically: more precise

New method to compute relative magnetic helicity in spherical wedge domains. (Moraitis et al. submitted) 08/03/18 - Séminaire du LPP - E. Pariat

Relative magnetic helicity estimations

- Numerous tests: sensibility to resolution, twist, solenoidality using various types of data.
 - Force free fields (Low & Lou 1990)
 - Stable flux rope (Titov & Démoulin 1999, data from T. Török)
 - Flux emergence simulations (Leake et al. 2013, 2014)
- Methods perform very consistently when B sufficiently solenoidal

08/03/18 - Séminaire du LPP - E. Pariat

160

200

Magnetic helicity dissipation estimation

• General formulation of the time variation of the relative magnetic helicity:

Magnetic helicity dissipation

Time variation of relative magnetic helicity

$$= -2 \int_{\mathcal{V}} \mathbf{B} \cdot \mathbf{E} \, d\mathcal{V} + 2 \int_{\mathcal{V}} \frac{\partial \phi}{\partial t} \nabla \cdot \mathbf{A}_{p} \, d\mathcal{V}$$

$$+ \int_{\partial \mathcal{V}} \left((\mathbf{A} - \mathbf{A}_{p}) \times \frac{\partial (\mathbf{A} + \mathbf{A}_{p})}{\partial t} \right) \cdot d\mathbf{S} - 2 \int_{\partial \mathcal{V}} \frac{\partial \phi}{\partial t} \mathbf{A}_{p} \cdot d\mathbf{S}$$

$$+ 2 \int_{\partial \mathcal{V}} (\mathbf{B} \cdot \mathbf{A}_{p}) \mathbf{v} \cdot d\mathbf{S} - 2 \int_{\partial \mathcal{V}} (\mathbf{v} \cdot \mathbf{A}_{p}) \mathbf{B} \cdot d\mathbf{S}$$

(Pariat et al. 15)

Flux of helicity of the studied field

- Helicity-conservation estimation: measure the difference between
 - helicity variations in $\mathcal V$

dH

- helicity flux through the boundary sides S.
- Method independent of the non-ideal processes, i.e. reconnection-model

$$C_m = -2 \int_{\mathcal{V}} \mathbf{E} \cdot \mathbf{B} \, \mathrm{d}\mathcal{V} = \frac{dH}{dt} - F_{tot}$$

Test case: coronal jet simu.

- **3D MHD simulation of a solar coronal jet:** Pariat et al. 09,10,15b ; Dalmasse et al. 12
 - Magnetic helicity/energy injected by bottom boundary motions
- First phase: helicity/energy storage.
 - Quasi-ideal MHD: reconnection inhibited.
- Second phase: Jet generation
 - Very impulsive energy release by recon.
 - Ejection of helicity.

(Shen et al. 11)

Helicity conservation - fluxes

- Helicity and its flux are estimated independently
 - Direct volume helicity computation (Valori et al. 12): **B** in \mathcal{V}
 - Helicity flux computation: **B**, **v** on S
- Magnetic helicity is very well conserved both during the quasiideal MHD and non-ideal phases.

$$H_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, \mathrm{d}\mathcal{V}$$

$$F_{tot} = F_{Vn} + F_{Bn} + F_{mix} + F_{\phi}$$

$$C_m = \frac{dH}{dt} - F_{tot}$$

Helicity conservation vs Energy

08/03/18 - Séminaire du LPP - E. Pariat

Helicity conservation tests

- Forty years after, the Taylor conjecture can now be numerically tested in general configurations, using typical numerical data sets.
- Estimations of the helicity conservation on an impulsive solar active like events (coronal jet).
 - Independent of reconnection models
 - Using several general gauges.
- As conjectured, magnetic helicity is very well conserved in this application
 H is not dissipated but ejected by the helical jet

Outline

- Context
- Magnetic helicity:
 - Definition
 - Properties
 - Measurements
- Magnetic helicity conservation in nonideal MHD
 - past experiments
 - new tests
- Magnetic helicity as an eruptivity proxy
- Conclusions

Flux emergence simulations

Simulate the formation of solar active regions

- 3D visco-resistive MHD eq. solved with Lagrangian-remap code (Arber et al. 2001)
- Evolution of a buoyant twisted magnetic flux rope from the upper layer of the solar convection zone into the solar atmosphere.

Parametric flux emergence simulations

- 7 flux emergence simulations leading either to eruptive or non-eruptive dynamics (Leake et al. 2013, 2014)
- Determine eruptivity criteria: methodology:
 - extract part of the magnetic field,
 - compute different physical quantities,
 - search those that discriminates between the eruptive and non-eruptive cases

(Leake et al. 13, 14)

Search for eruptivity criterion

Useless Criteria

Pertinent Criteria

Goal: search for eruptivity indicators from 3D coronal magnetic datacube

- Good eruptivity criterion should:
 - Discriminate eruptive and non-eruptive sim. during pre-eruptive phase
 - Reach its highest value
 - for eruptive simulation only,
 - during the pre-eruptive phase only.
 - Present similar trend for eruptive and non-eruptive sim. in post-eruptive phase

(Guennou et al. 17)

Magnetic fluxes and energies

 Neither injected magnetic flux nor magnetic energies are properly discriminating between the different simulations and do not provide reliable eruptivity diagnostics

Relative magnetic helicity evolution

(Pariat et al. 17)

- Unlike with magnetic flux & free energy, helicity discriminates strongly the cases
 - Total helicity depends
 - on dipole strength
 - on dipole orientation
- The surrounding (potential) field influences the helicity content!
- magnetic helicity is a non-local quantity!

Here, eruptive simulations have lower helicity than non-eruptive one
 Junlike what is commonly believed/expected, large total helicity is not a sufficient condition of eruptivity.

Relative magnetic helicity decomposition

- Based on the decomposition of a magnetic field into potential and nonpotential fields....
- Relative magnetic helicity can be decomposed in 2 gauge-invariants quantities (Berger et al. 2003) :
 - H_j = magnetic helicity of the currentcarrying field B_j (non-potential field)
 - H_{pj} = volume-threading helicity, between potential and currentcarrying fields
- Remark for the heli-aware: H_j & H_{pj} are different from the "self" and "mutual" helicities

 $H_{V} = H_{j} + 2H_{pj} \text{ with}$ $H_{j} = \int_{\mathcal{V}} (\mathbf{A} - \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V}$ $H_{pj} = \int_{\mathcal{V}} \mathbf{A}_{p} \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V}$

Helicity decomposition evolution

$$H_{V} = H_{j} + 2H_{pj} \text{ with}$$
$$H_{j} = \int_{\mathcal{V}} (\mathbf{A} - \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$$
$$H_{pj} = \int_{\mathcal{V}} \mathbf{A}_{p} \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$$

- Total helicity is overall dominated by 2H_{pi}
- 2H_{pj} has same properties than total helicity → not a good eruptivity proxy
- H_j behaves similarly to E_{free}
 - higher for the eruptive simulations in the pre-eruptive phase
 - however higest values reached by non-eruptive simulations
- H_j is not a good eruptivity proxy.

$|H_i|/|H_v|$: excellent eruptivity indicators

$$H_{V} = H_{j} + 2H_{pj} \text{ with}$$

$$H_{j} = \int_{\mathcal{V}} (\mathbf{A} - \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V}$$

$$H_{pj} = \int_{\mathcal{V}} \mathbf{A}_{p} \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V}$$

|H_j|/|H_V| appears as an excellent eruptivity predictor of these sims.

- Highest value for the eruptive simulations in the pre-eruptive phase
- Eruptive and noneruptive simulations have similar values in post-eruption phase

 $|H_j|/|H_v|$ is also sensitive to dipole strength which fits with promptness to erupt

Line-tied eruptive simulations

- The parametric flux simulations may be deterministically stable/instable.
 - They are not starting from a stable configuration that is brought toward instability
 - One cannot study the existence of an helicity instability threshold
- ► → line-tied boundary driven simulations of solar eruptions (Zuccarello et al. 15):
 - 3D visco-resitive MHD simulations; Ohm-MPI code (Aulanier et al. 10, Zuccarello et al. 16)
 - Initially potential/stable configuration ; quasi-steadly injection of energy/helicity
 - → eventual trigger of solar-like eruption

Eruption trigger time determination

 For each simulation, precise determination of the onset time, t_{erupt}, thanks to numerous relaxation runs initiated at regular instants.

Line-tied parametric simulations

- Zuccarello et al. 2015: parametric eruptive simulations
- 4 different line-tied boundary driving patterns with different: shear around the PIL magnetic flux dispersion + 1 non-eruptive control case (diffusion)

Further evidences : line-tied eruptive simulations

- Computation of several quantities at the sim. respective t_{erupt}: Zuccarello et al. to be submitted.
- Despites different boundary drivers and t_{erupt}, eruptions are triggered when |H_j|/|H_v| reaches the same value:
 - <a>

 <a>

 <a>

 <br
 - within measurement precision of helicity
- All other quantities have dispersions of values above 8 % at t_{erupt} , including torus instability criteria

(Zuccarello et al. tbs)

Outline

- Context
- Magnetic helicity:
 - Definition
 - Properties
 - Measurements
- Magnetic helicity conservation in nonideal MHD
 - past experiments
 - new tests
- Magnetic helicity as an eruptivity proxy
- Conclusions

Conclusions - 1

- The ratio |Hj|/|Hv| is an excellent indicator of the eruptivity state in several numerical models
 - 15 different numerical simulations
 - inducing 11 eruptions & 6 stable systems
 - in 4 very different magnetic configuration
 - performed by 3 different MHD numerical codes
- Now needs to be validated against proper observational datasets, of a sufficiently good quality!
 - May not be that easy… !
- Possibly strong deterministic proxy
 of solar eruption

Conclusions - 2

- If one can describe a phenomena within the MHD paradigm, magnetic helicity may be worth looking at!
 - Physics is based on conservation principles
 - Magnetic helicity is one of the few quantity conserved in MHD
- New robust (benchmarked) methods to estimate magnetic helicity in observations and simulations datasets
 - Cartesian or spherical system of coordinates
 - 3D datacubes of **B** is all what is needed!

