Numerical solution of Laplace's equation in spherical finite volumes

Kostas Moraitis

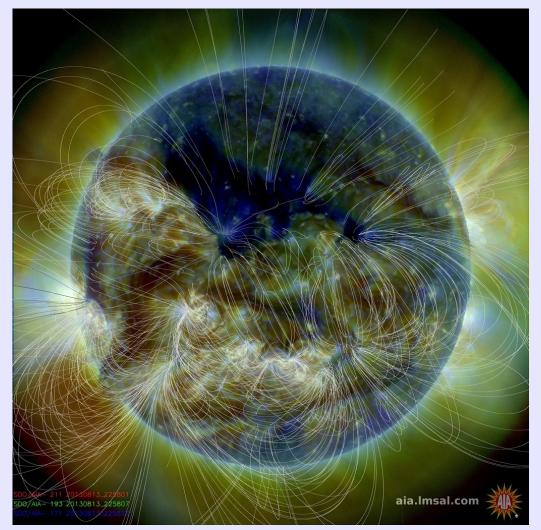
LESIA, Observatoire de Paris, PSL*, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, USPC

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Outline

- Introduction Magnetic helicity
- Solution method description + validation
- Concluding remarks

Introduction



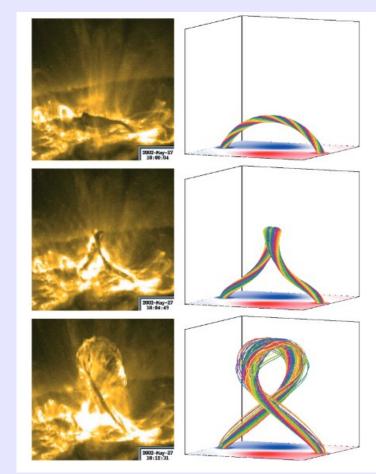
Solar studies

- Eruptive phenomena (solar flares, coronal mass ejections)
- Fundamental role of the magnetic field
- Spherical geometry

Magnetic helicity

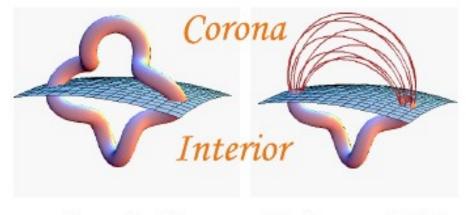
- Signed scalar quantity (right (+), or left (-) handed)
 Helicity measures the twist and writhe of mfls, and the amount of flux linkages between pairs of lines (Gauss linking number)
- Conserved in the standard paradigm of solar study (ideal magnetohydrodynamics, MHD)
- Coronal mass ejections are caused by the need to expel the excess helicity accumulated in the corona (Rust 1994)

$$H = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, dV \qquad \boldsymbol{B} = \nabla \times \boldsymbol{A}$$



Török & Kliem 2005

Relative magnetic helicity



True Field Reference Field Berger & Field 1984, Finn & Antonsen 1985 relative magnetic helicity

$$H = \int_{V} (\boldsymbol{A} + \boldsymbol{A}_{p}) \cdot (\boldsymbol{B} - \boldsymbol{B}_{p}) dV$$

gauge invariant for closed (and solenoidal) $B - B_p$

 $\hat{n} \cdot \boldsymbol{B} \big|_{\partial V} = \hat{n} \cdot \boldsymbol{B}_{p} \big|_{\partial V}$

∂V : the whole boundary

Finite volume computation

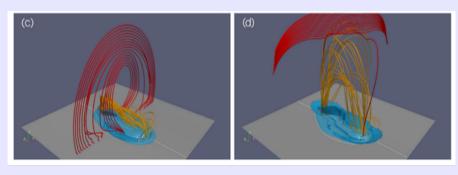
 $H = \int_{V} (\boldsymbol{A} + \boldsymbol{A}_{p}) \cdot (\boldsymbol{B} - \boldsymbol{B}_{p}) dV$

given **B** find **B**_p
 given **B**, **B**_p find **A**, **A**_p

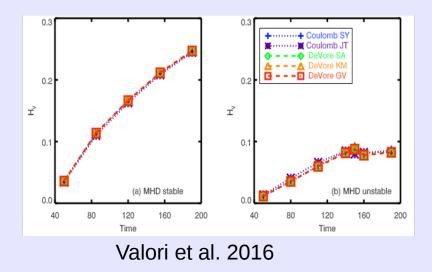
Potential field calculation

Potential magnetic field satisfying condition

$$\mathbf{B}_{\mathrm{p}} = \nabla \Phi \\ \hat{n} \cdot \mathbf{B}_{\mathbf{p}} \big|_{\partial V} = \hat{n} \cdot \mathbf{B} \big|_{\partial V}$$



Leake et al. 2013, 2014



$$\nabla^2 \Phi = 0$$
$$\frac{\partial \Phi}{\partial \hat{n}}\Big|_{\partial V} = \hat{n} \cdot \mathbf{B}|_{\partial V}$$

solution of Laplace's equation under Neumann BCs

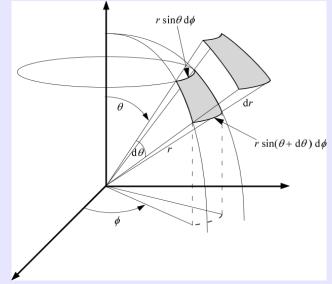
In Cartesian coordinates:

- Many methods to solve (eg FFT)
- Not considering all 6 boundaries of the volume (eg, considering only the bottom boundary) can lead to incorrect helicity values, and even to opposite sign (Valori et al. 2012)

Potential field calculation – Spherical geometry

Potential magnetic field satisfying condition \hat{n}

 $\mathbf{B}_{\mathrm{p}} = \nabla \Phi$ $\hat{n} \cdot \mathbf{B}|_{\partial V} = \hat{n} \cdot \mathbf{B}_{p}|_{\partial V}$



$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta^2} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$
$$\frac{\partial \Phi}{\partial \hat{n}} \Big|_{\partial V} = \hat{n} \cdot \mathbf{B}|_{\partial V}$$

in the spherical finite volume (wedge)

 $V = \{ (r, \theta, \varphi) : r \in [r_{\min}, r_{\max}], \theta \in [\theta_{\min}, \theta_{\max}], \varphi \in [\varphi_{\min}, \varphi_{\max}] \}$

BVP well defined only for flux-balanced 3D field $\int_{\partial V} \mathbf{B} \cdot d\mathbf{S} = 0$

Solution methods

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial\Phi}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Phi}{\partial\theta}\right) + \frac{1}{r^{2}\sin\theta^{2}}\frac{\partial^{2}\Phi}{\partial\phi^{2}} = 0$$
$$\frac{\partial\Phi}{\partial\hat{n}}\Big|_{\partial V} = \hat{n}\cdot\mathbf{B}|_{\partial V}$$
$$V = \left\{\left(r,\theta,\varphi\right): r \in [r_{\min},r_{\max}], \theta \in [\theta_{\min},\theta_{\max}], \varphi \in [\varphi_{\min},\varphi_{\max}]\right\}$$

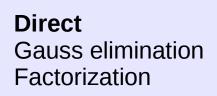
Finite difference discretization of the volume and the equation

$$r_i, \ i = 0, \dots, N_r - 1$$

 $\theta_j, \ j = 0, \dots, N_{\theta} - 1$
 $\phi_k, \ k = 0, \dots, N_{\phi} - 1$

results in the large linear system of $N_r x N_{\theta} x N_{\omega}$ equations

Lu=f with *L* a block tridiagonal matrix



Iterative

Jacobi Gauss-Seidel Conjugate gradient Multigrid

27 February 2018, Meudon

i, j, k + 1

i, j, k + 1

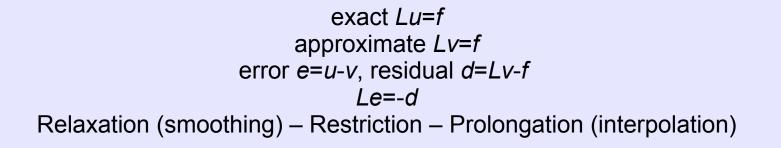
i - 1, j, k 🖷

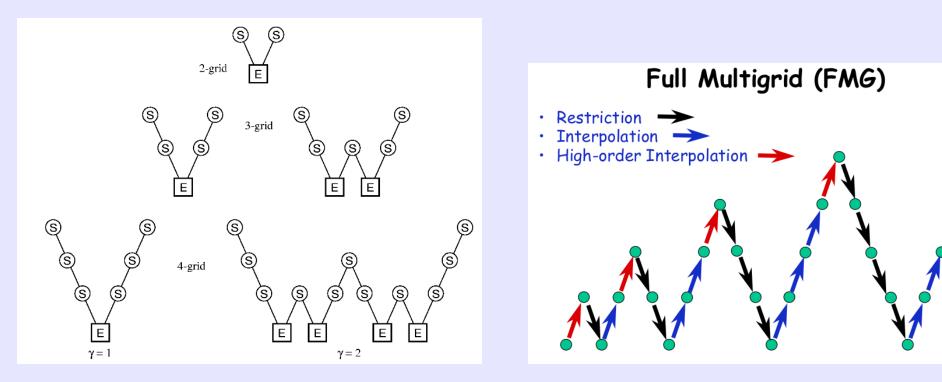
i, j - 1, k

i, j + 1, k

• i + 1, j, k

Multigrid technique





Solution method

We use the FORTRAN (F77/F90) routine **mud3sa** from the MUDPACK* library (NCAR) mud3sa automatically discretizes and attempts to compute the 2nd order conservative finite difference approximation to the 3D linear, non-separable, self-adjoint, elliptic PDE $\frac{\partial}{\partial x} \left(g_x \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y} \left(g_y \frac{\partial u}{\partial y}\right) + \frac{\partial}{\partial z} \left(g_z \frac{\partial u}{\partial z}\right) + \lambda u = S$

on the rectangle $[x_1, x_2] \times [y_1, y_2] \times [z_1, z_2]$

- Uniform (*dx*=const., *dy*=const., *dz*=const.), non-homogenous (*dx≠dy≠dz*) grid
- Routine is called twice: discretization call/approximation call; error checking
- Input to the routine
- functions g_x , g_y , g_z , S, and parameter λ
- N_r , N_{θ} , N_{φ} ($a^{*2^{b-1}+1}$, so that multigrid is efficient; if not interpolate)
 - (11, 13, 17, 21, 25, 33, 41, 49, 65, 81, 97, 129, 161, 193, 257, 321, 385, 513, 641, 769, 1025)
 - $r_{\min}, r_{\max}, \theta_{\min}, \theta_{\max}, \varphi_{\min}, \varphi_{\max}$
 - type of BCs (periodic, Dirichlet, or mixed derivative)
- rhs of BCs $\left. \frac{\partial \Phi}{\partial \hat{n}} \right|_{\partial V} = \left. \hat{n} \cdot \mathbf{B} \right|_{\partial V}$
- solver options: # of relaxation sweeps before/after a fine-coarse-fine cycle, v-, w-, or k-cycles, FMG or not, multilinear/multicubic prolongation, relaxation method (Gauss-Seidel, linear/planar relaxation)
- → Output Φ

27 February 2018, Meudon

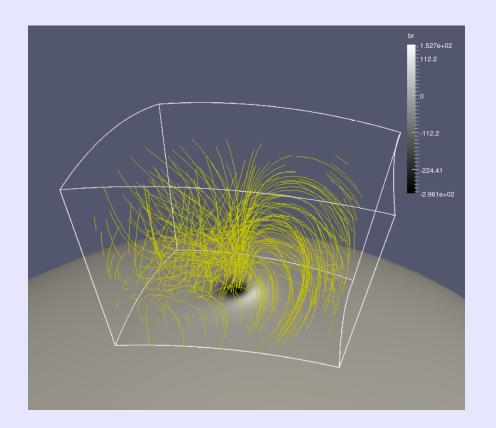
*www2.cisl.ucar.edu/resources/legacy/mudpack

 $x \rightarrow r$ $y \rightarrow \theta$ $z \rightarrow \varphi$ $g_x \rightarrow r^2 \sin(\theta)$ $g_y \rightarrow \sin(\theta)$ $g_z \rightarrow 1/\sin(\theta)$ $\lambda = S = 0$

Solution method

Grid Size	Storage	T0	\mathbf{Ts}	Mflop 16	Error 0.17e-2
25 X 9 X 17	0.056 Mwords	0.13 sec	0.02 sec		
49 X 17 X 33	0.388 Mwords	0.86 sec	0.09 sec	32	0.40e-3
97 X 33 X 65 2.895 Mword		6.63 sec	0.39 sec	57	0.99e-4
193 X 65 X 129	22.351 Mwords	51.61 sec	1.91 sec	91	0.25e-4
100 X 00 X 120			2.01 500	.	0.200

Method validation



- semi-analytical, force-free fields of Low & Lou 1990
- LL parameters:
 *n=m=*1, *I=*0.3, *Φ=*π/4
- angular size:
 20°x20° on the Sun, or
 ~200Mm x ~200Mm
- · AR height: 200Mm
- resolution:
 - 129x129x129 grid points 257x257x257 grid points
- Test for:

resolution + solenoidality

field	grid	$\left< f_i \right>$	ϵ_{flux}	ξ	E	$E_{\rm c}/E$	$E_{\rm div}/E$	s_{\max}
в	120	2.2110^{-4}	$1.70 10^{-3}$ $1.83 10^{-3}$	1.9910^{-2}	45.3	0.262	1.1010^{-3}	7.910 - 3
$\mathbf{B}_{\mathbf{p}}$	129					0.202	1.10 10	1.910
в	257	2.1610^{-4}	$2.15 10^{-3}$	$3.67 10^{-2}$	45.2	0.261	$2.51 10^{-3}$	$5.1.10^{-3}$
$\mathbf{B}_{\mathbf{p}}$	B_p 207	2.1410^{-4}	2.2310^{-3}	3.5910^{-4}	33.4	0.201	2.51 10	5.1 10

Conclusions

the physical problem

 $\nabla^2 \Phi = 0 \text{ in } V \qquad \Rightarrow \qquad \nabla \times \mathbf{X} = \nabla \cdot \mathbf{X} = 0 \text{ in } V$ $\stackrel{\partial \Phi}{\partial \hat{n}} = \text{ given in } \partial V \qquad \hat{n} \cdot \mathbf{X} = \text{ given in } \partial V$

the numerical problem

- Solution of linear elliptic PDEs in various forms (real/complex, 2D/3D, separable/non-separable, ...), with various types of BCs, in any coordinate system, BUT only uniform grids, and additionally:
- Ease of input
- Automatic discretization to 2nd/4th order approximation
- Many choices for multigrid options and relaxation methods
- Error control
- Flagging of errors
- OpenMP parallelization
- +many more (output of minimal workspace requirements, documentation, test programs)