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Introduction

Solar studies
● Eruptive phenomena (solar flares, 

coronal mass ejections)
● Fundamental role of the magnetic field
● Spherical geometry
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Magnetic helicity

● Conserved in the standard paradigm of solar study 

(ideal magnetohydrodynamics, MHD)

● Coronal mass ejections are caused by the need to 

expel the excess helicity accumulated in the corona

(Rust 1994)

Török & Kliem 2005

• Signed scalar quantity (right (+), or left (-) handed)
• Helicity measures the twist and writhe of mfls, and 

the amount of flux linkages between pairs of lines 
(Gauss linking number)

Η=∫V
A⋅BdV B=∇×A
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Relative magnetic helicity

Berger & Field 1984, Finn & Antonsen 1985

H=∫V
(A+Ap)⋅(B−B p)dV

gauge invariant for closed 
(and solenoidal) B−B p

n̂⋅B|∂V= n̂⋅B p|∂ V

relative magnetic helicity

∂V: the whole boundary

Finite volume computation

H=∫V
(A+Ap)⋅(B−B p)dV

1. given B find B
p

2. given B, B
p
 find A, A

p
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Potential field calculation

under Neumann BCs

solution of Laplace's 
equation

n̂⋅B p|∂V= n̂⋅B|∂ V
Potential magnetic field

satisfying condition

In Cartesian coordinates:
● Many methods to solve (eg FFT)
● Not considering all 6 boundaries of the 

volume (eg, considering only the bottom 
boundary) can lead to incorrect helicity 
values, and even to opposite sign (Valori et 
al. 2012)

Valori et al. 2016
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Potential field calculation – Spherical geometry

under Neumann BCs

solution of Laplace's 
equation

in the spherical finite volume (wedge)

V ={( r , θ , φ) : r∈ [rmin , rmax ] , θ∈ [θmin , θmax ] , φ∈ [φmin , φmax] }

n̂⋅B|∂V= n̂⋅B p|∂ V
Potential magnetic field

BVP well defined only for flux-balanced 3D field

satisfying condition
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Solution methods

results in the large linear system of N
r
xN

θ
xΝ

φ
 equations

Lu=f 
with L a block tridiagonal matrix

V ={( r , θ , φ) : r∈ [rmin , rmax ] , θ∈ [θmin , θmax ] , φ∈ [φmin , φmax] }

Direct
Gauss elimination
Factorization

Iterative
Jacobi
Gauss-Seidel
Conjugate gradient
Multigrid

Finite difference discretization of the 
volume and the equation
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Multigrid technique

exact Lu=f
approximate Lv=f

error e=u-v, residual d=Lv-f 
Le=-d

Relaxation (smoothing) – Restriction – Prolongation (interpolation)
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Solution method

We use the FORTRAN (F77/F90) routine mud3sa from the MUDPACK* library (NCAR)
mud3sa automatically discretizes and attempts to compute
the 2nd order conservative finite difference approximation
to the 3D linear, non-separable, self-adjoint, elliptic PDE

∂

∂ x (gx
∂ u
∂ x )+ ∂

∂ y (g y
∂u
∂ y )+ ∂

∂ z (gz
∂ u
∂ z )+λu=S

[x1 , x2]×[ y1 , y2]×[z1 , z2]

x→r
y→θ
z→φ

gx→r2 sin(θ)

g y→sin (θ)

gz→1/sin(θ)

λ=S=0

 Uniform (dx=const., dy=const., dz=const.), non-homogenous (dx≠dy≠dz) grid
 Routine is called twice: discretization call/approximation call; error checking
➔ Input to the routine
● functions g

x
, g

y
, g

z
, S, and parameter λ

● N
r
, N

θ
, Ν

φ
 (a*2b-1+1, so that multigrid is efficient; if not interpolate)

(11,13,17,21,25,33,41,49,65,81,97,129,161,193,257,321,385,513,641,769,1025)
● r

min
, r

max
, θ

min
, θ

max
, φ

min
, φ

max
● type of BCs (periodic, Dirichlet, or mixed derivative)
● rhs of BCs 

on the rectangle

● solver options: # of relaxation sweeps before/after a fine-coarse-fine cycle, 
v-, w-, or k-cycles, FMG or not, multilinear/multicubic prolongation, 
relaxation method (Gauss-Seidel, linear/planar relaxation)

➔ Output Φ

*www2.cisl.ucar.edu/resources/legacy/mudpack
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Solution method
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Method validation

• semi-analytical, force-free fields
of Low & Lou 1990

• LL parameters:
n=m=1, l=0.3, Φ=π/4

• angular size:
20ox20o on the Sun, or
~200Mm x ~200Mm

• AR height: 200Mm
• resolution:

129x129x129 grid points
257x257x257 grid points

• Test for:
resolution + solenoidality
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Conclusions

∇
2 Φ=0  in V

∂Φ
∂ n̂

=  given in ∂V
⇒

∇×X=∇⋅X=0  in V

n̂⋅X=  given in ∂V

the physical problem

the numerical problem

● Solution of linear elliptic PDEs in various forms (real/complex, 2D/3D, separable/non-
separable, …), with various types of BCs, in any coordinate system, BUT only uniform 
grids, and additionally:

● Ease of input

● Automatic discretization to 2nd/4th order approximation

● Many choices for multigrid options and relaxation methods

● Error control

● Flagging of errors

● OpenMP parallelization

● +many more (output of minimal workspace requirements, documentation, test programs)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

