

FLAREICAST

MADAWG meeting Toulouse, France, 22-24 Jan. 2018

Magnetic helicity, eruptivity and the need for good 3D NLFFF extrapolations

<u>É. Pariat¹</u>, G. Valori², L. Linan¹, J. Leake³, K. Dalmasse⁴, M. Linton⁵, F. Zuccarello⁶

¹LESIA, Observatoire de Paris, PSL*, CNRS, UPMC, Univ. D. Diderot, France ²MSSL, University College London, UK ³NASA GSFC, Greenbelt MD, USA ⁴IRAP, Univ. Toulouse, CNRS, UPS, CNES, France ⁵NRL, Washington DC, USA ⁵KU Leuven, Belgium

Outline

Magnetic helicity: definition and properties

Magnetic helicity-based eruptivity proxy

 Measurement of magnetic helicity from solar observational data

Definition of Magnetic Helicity

• Helicity of the magnetic field in MHD plasmas (Elsasser 56)

$$H = \int_{\mathcal{V}} \vec{A} \cdot \vec{B} \, \mathrm{d}V \quad , \quad \vec{B} = \vec{\nabla} \times \vec{A} \leftarrow \text{Magnetic vector potential}$$

Unique signed scalar value for volume considered

- Magnetic helicity: signed level of knotedness and twist of magnetic field lines
 - Magnetic flux weighted Gauss Linking Number of pairs of magnetic field lines (Moffatt 1968)

$$L_{12} = -\frac{1}{4\pi} \oint_1 \oint_2 \frac{d\mathbf{x}}{d\sigma} \cdot \frac{\mathbf{r}}{r^3} \times \frac{d\mathbf{y}}{d\tau} \, d\tau \, d\sigma$$

$$H = -\frac{1}{4\pi} \int \int \mathbf{B}(\mathbf{x}) \cdot \frac{\mathbf{r}}{r^3} \times \mathbf{B}(\mathbf{x}') \ d^3x \ d^3x'$$

- For a uniformly twisted flux tube

H=N Φ_{ax}^2 N:nbr of turns, Φ_{ax} : axial flux

Magnetic helicity properties

(Török et al. 05)

- Inverse helicity cascade: Helicity goes from small to large spatial scales. (Frisch et al. 1975, Alexakis et al. 06)
 - e.g. kink instability (Malanushenko et al. 09)
- Impact on dynamic of magnetic reconnection: e.g. Linton et al. 01, Del Soro et al. 10

Helicity and solar eruption

- Helicity conservation could be the "raison d'être" of coronal mass ejections (Rust 94, Low 96).
- Several observational studies have shown diverse indications that magnetic helicity can be tightly linked with enhanced eruptivity: (Nindos et al. 04, Labonte et al. 07, Park et al. 08, 10, Tziotziou et al. 12)

with CME

Gauge invariance of magnetic helicity

Gauge transformation of magnetic helicity:

$$H = \int_{\mathcal{V}} ec{A} \cdot ec{B} \; \mathrm{d}V$$

$$\mathbf{A'} \longrightarrow \mathbf{A} + \nabla \phi_{s} \qquad \qquad H'_{m} = \int_{V} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V + \int_{V} \nabla \phi \cdot \mathbf{B} \, \mathrm{d}V = H_{m} + \int_{S} \phi \mathbf{B} \cdot \mathrm{d}S$$

 Magnetic helicity is gauge invariant only for magnetically bounded systems:

 $\mathbf{B} \cdot \mathbf{dS} |_{\mathbf{S}} = 0$

- Strict definition of magnetic helicity useless for numerous applications:
 - e.g. natural plasmas, like the solar corona have boundaries threaded by magnetic fields

Relative Magnetic Helicity

→ Useful quantity: Relative Magnetic Helicity: helicity of a studied field relative to a reference field (Berger 84, Finn & Antonsen 85).

$$H_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V} \quad \text{(Finn & Antonsen 85)}$$

with boundary condition : $(\mathbf{B}_p \cdot d\mathbf{S})|_{\partial \mathcal{V}} = (\mathbf{B} \cdot d\mathbf{S})|_{\partial \mathcal{V}} \qquad \nabla \times \mathbf{A} = \mathbf{B}$

 Gauge invariant provided that studied and reference fields share the same magnetic-flux distribution <u>on the whole boundary</u>.

Relative Magnetic Helicity Estimations

- The computation of relative magnetic helicity is not straightforward:
 - Computation of reference field must be done imposing boundary conditions on the whole domain boundary.
 - Many previous methods assumed semi-infinite volumes while all existing datasets are bounded volumes: could lead to incorrect results (Valori et al. 11, 12) error in intensity, even in sign!
- Several methods recently developed on 3D cuboid system (Valori et al. 2016) $\nabla \cdot \mathbf{A} = 0$
 - Using Coulomb gauge:

Thalmann et al. 2011, Rudenko & Myshyakov 2011, Yang et al. 2013

- Simpler theoretical formulation
- Harder to implement numerically
- Using DeVore gauge (DeVore et al. 2000) : $A_z = 0$

Valori, Démoulin & Pariat 2012, Moraitis et al. 2014

- More complex theoretical formulation
- Simpler to implement numerically: more precise

New method to compute relative magnetic helicity in spherical wedge domains. (Moraitis et al. submitted) 22/01/17 - MADAWG Meeting, Toulouse, Fr - E. Pariat

Relative magnetic helicity estimations

- Numerous tests: sensibility to resolution, twist, solenoidality using various types of data.
 - Force free fields (Low & Lou 1990)
 - Stable flux rope (Titov & Démoulin 1999, data from T. Török)
 - Flux emergence simulations (Leake et al. 2013, 2014)
- Methods perform very consistently when B sufficiently solenoidal

22/01/17 - MADAWG Meeting, Toulouse, Fr - E. Pariat

200

Outline

Magnetic helicity: definition and properties

Magnetic helicity-based eruptivity proxy

 Measurement of magnetic helicity from solar observational data

Motivations & Methodology

- Goal: use flux emergence simulations to look for efficient eruptivity criterion
 - 7 flux emergence simulations obtained with 3D visco-resistive MHD eq. solved with Lagrangian-remap code (Arber et al. 2001)
 - either lead to eruptive or non-eruptive dynamics (Leake et al. 2013, 2014)
- Methodology: extract part of the magnetic field,
 - compute different physical quantities,
 - search those that discriminates between the eruptive and non-eruptive case

22/01/17 - MADAWG Meeting, Toulouse, Fr - E. Pariat

(Leake et al. 13, 14)

Search for eruptivity criterion

Useless Criteria

Pertinent Criteria

Goal: search for eruptivity indicators from 3D coronal magnetic datacube

- Good eruptivity criterion should:
 - Discriminate eruptive and non-eruptive sim. during pre-eruptive phase
 - Reach its highest value
 - for eruptive simulation only,
 - during the pre-eruptive phase only.
 - Present similar trend for eruptive and non-eruptive sim. in post-eruptive phase

(Guennou et al. 17)

Magnetic fluxes and energies

 Neither injected magnetic flux nor magnetic energies are properly discriminating between the different simulations and do not provide reliable eruptivity diagnostics

Relative magnetic helicity evolution

(Pariat et al. 17)

- Unlike with magnetic flux & free energy, helicity discriminates strongly the cases
 - Total helicity depends
 - on dipole strength
 - on dipole orientation
- The surrounding (potential) field influences the helicity content!
- magnetic helicity is a non-local quantity!

Here, eruptive simulations have lower helicity than non-eruptive one
 Junlike what is commonly believed/expected, large total helicity is not a sufficient condition of eruptivity.

Relative magnetic helicity decomposition

- Based on the decomposition of a magnetic field into potential and nonpotential fields....
- Relative magnetic helicity can be decomposed in 2 gauge-invariants quantities (Berger et al. 2003) :
 - H_j = magnetic helicity of the currentcarrying field B_j (non-potential field)
 - H_{pj} = volume-threading helicity, between potential and currentcarrying fields
- Remark for the heli-aware: H_j & H_{pj} are different from the "self" and "mutual" helicities

 $H_{V} = H_{j} + 2H_{pj} \text{ with}$ $H_{j} = \int_{\mathcal{V}} (\mathbf{A} - \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V}$ $H_{pj} = \int_{\mathcal{V}} \mathbf{A}_{p} \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V}$

Helicity decomposition evolution

$$H_{V} = H_{j} + 2H_{pj} \text{ with}$$
$$H_{j} = \int_{\mathcal{V}} (\mathbf{A} - \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$$
$$H_{pj} = \int_{\mathcal{V}} \mathbf{A}_{p} \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$$

- Total helicity is overall dominated by 2H_{pi}
- 2H_{pi} has same properties than total helicity \rightarrow not a good eruptivity proxy
- H_i behaves similarly to E_{free}
 - higher for the eruptive simulations in the pre-eruptive phase
 - however higest values reached by non-eruptive simulations
- H_i is not a good eruptivity proxy.

$|H_i|/|H_v|$: excellent eruptivity indicators

$$H_{V} = H_{j} + 2H_{pj} \text{ with}$$

$$H_{j} = \int_{\mathcal{V}} (\mathbf{A} - \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$$

$$H_{pj} = \int_{\mathcal{V}} \mathbf{A}_{p} \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$$

|H_j|/|H_V| appears as an excellent eruptivity predictor of these sims.

- Highest value for the eruptive simulations in the pre-eruptive phase
- Eruptive and noneruptive simulations have similar values in post-eruption phase

 $|H_j|/|H_v|$ is also sensitive to dipole strength which fits with promptness to erupt

Further evidences : torus-instability triggered eruptive simulations

- Zuccarello et al. 2015: parametric eruptive simulations
- 4 different line-tied boundary driving patterns with different: shear around the PIL magnetic flux dispersion + 1 non-eruptive control case (diffusion)

Further evidences : torus-instability triggered eruptive simulations

0

50

100

150

time/tA

200

250

100 tA

Relaxation run at t_{erupt} t: 220 tA Relaxation run at $t_{erupt} - 4t_A$ t: 220 tA

22/01/17 - MADAWG Meeting, Toulouse, Fr - E. Pariat

300

0.002

Further evidences : torus-instability triggered eruptive simulations (Zuccarello et al. tbs)

- Computation of several quantities at the sim. respective t_{erupt}: Zuccarello et al. to be submitted.
- Despites different boundary drivers and t_{erupt}, eruptions are triggered when |H_j|/|H_V| reaches the same value:
 - <a>

 <a>

 <a>

 <br
 - within measurement precision of helicity
- All other quantities have dispersions of values above 8 % at t_{erupt} , including torus instability criteria

Partial - conclusions

- (too) Rare attempts to use parametric numerical simulation to study eruptivity proxy of solar active events.
- The ratio |Hj|/|Hv| is an excellent indicator of the eruptivity state in several numerical models
 - 15 different numerical simulations
 - inducing 11 eruptions & 6 stable systems
 - in 4 very different magnetic configuration
 - performed by 3 different MHD numerical codes
- Now needs to be validated against proper observational datasets

Outline

Magnetic helicity: definition and properties

Magnetic helicity-based eruptivity proxy

 Measurement of magnetic helicity from solar observational data

Helicity estimation from observations

• Two main methods: cf review Valori et al., Space Science Rev. 2016

Finite volume (FV)
$$\mathcal{H}_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$$
Input: 3D magnetic field!- Requires **B** in \mathcal{V} e.g., from MHD simulations or
NLFFFRequires 3D reconstruction
of the coronal magnetic field
from 2D magnetogram- Compute $\mathcal{H}_{\mathcal{V}}$ at one time
- May employ different gauges (Helicity-flux integration (FI)
 $\frac{d\mathcal{H}_{\mathcal{V}}}{dt} = 2 \int_{\partial \mathcal{V}} [(\mathbf{A}_{p} \cdot \mathbf{B})v_{n} - (\mathbf{A}_{p} \cdot \mathbf{v}_{t})B_{n}] dS$ • Input: time series of 2D
magnetograms
• Direct estimations from
observed data- Requires time evolution of vector field on $\partial \mathcal{V}$
Requires knowledge or model of flows on $\partial \mathcal{V}$
Valid for a specific set of gauge and assumptions,

Helicity flux integration methods

$$\frac{\mathrm{d}\mathcal{H}_{\mathcal{V}}}{\mathrm{d}t} = 2\int_{\partial\mathcal{V}} \left[(\mathbf{A}_{\mathrm{p}} \cdot \mathbf{B}) v_n - (\mathbf{A}_{\mathrm{p}} \cdot \mathbf{v}_{\mathrm{t}}) B_n \right] \mathrm{d}S$$

- Most commonly used method to measure magnetic helicity : review Démoulin & Pariat 09
- How to measure the helicity flux?

~ ^

- B is given from spectropolarimetry (magnetograms)
- A_P is inferred from Bn maps by:
 - Fourier Transform methods (e.g. Chae 01) or Green functions (e.g. Liu & Schuck 14)
- V may be deduced from optical flow method:
 - Local Correlation Tracking Methods
 - DAVE & DAVE4VM (Schuck 06; 08)
- All what is needed are time series of magnetograms at the highest possible cadence & resolution
 22/01/17 - MADA

Flux of non-potential magnetic helicity

• While relative magnetic helicity is a quasi-conserved, the terms of its decomposition are not (Linan et al. 18) $H_V = H_i + 2H_{pi}$

$$\frac{\mathrm{d}H_j}{\mathrm{d}t} = 2 \int_V \mathbf{R} \cdot \mathbf{B}_j \,\mathrm{d}V + 2 \int_V ((\mathbf{v} \times \mathbf{B}) \cdot \mathbf{B}_p) \,\mathrm{d}V + 2 \int_V \frac{\partial \phi}{\partial t} \nabla \cdot \mathbf{A}_j \,\mathrm{d}V$$
$$- 2 \int_S (\mathbf{B} \cdot \mathbf{A}_j) \mathbf{v} \cdot \mathrm{d}S + 2 \int_S (\mathbf{v} \cdot \mathbf{A}_j) \mathbf{B} \cdot \mathrm{d}S + \int_S \mathbf{A}_j \times \frac{\partial}{\partial t} \mathbf{A}_j \cdot \mathrm{d}S - 2 \int_S \frac{\partial \phi}{\partial t} \mathbf{A}_j \cdot \mathrm{d}S$$

→ Unlike magnetic helicity, the evolution (accumulation) of H_j cannot be determined solely from its flux.

(Pariat et al. 09)

Helicity eruptivity proxy estimation in observation

- The helicity-flux integration method is useless to estimate the eruptivity proxy |H_j|/|H_V|
- One must use the finite volume method, hence determine B in the full 3D domain

Finite volume (FV)

$$\mathcal{H}_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_p) \cdot (\mathbf{B} - \mathbf{B}_p) \, d\mathbf{\lambda}$$

- Requires **B** in \mathcal{V} *e.g.*, from MHD simulations or NLFFF
- Compute $\mathcal{H}_{\mathcal{V}}$ at one time

 $\mathrm{d}\mathcal{H}_{\mathbf{J}}$

- May employ different gauges (see Table 2)

Helicity-flux integration (FI)

 $(B_n] dS$

- $= \int_{\mathcal{O}\mathcal{V}} [(\mathbf{A}_{\mathbf{p}} \cdot \mathbf{B}) v_n (\mathbf{A}_{\mathbf{p}}) v_n ($
- Requires time evolution of vector field on $\partial \mathcal{V}$
- Requires knowledge or model of flows on $\partial \mathcal{V}$
- Valid for a specific set of gauge and a sumptions,

Neeting, Toulouse, Fr - E. Pariat

Finite volume method

Finite volume (FV) $\mathcal{H}_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, \mathrm{d}\mathcal{V}$

- Requires **B** in \mathcal{V} *e.g.*, from MHD simulations or NLFFF
- Compute $\mathcal{H}_{\mathcal{V}}$ at one time
- May employ different gauges (see Table 2)
- Less commonly used for helicity studies so far: e.g. Valori et al. 13, DeRosa et al. 15, Polito et al. 2017, Temmer et al. 17
- Which extrapolation approximation?
 - Potential field extrapolation : helicity is null by definition
 - Linear force-free field extrapolation: helicity directly given by linear force free parameter: you get what you put in!
- Helicity computation by the finite volume method requires extrapolation in the non-linear force-free field (NLFFF) approximation
 - or MHD model, though so far either initiated by NLFFF extrapolation or more complicated to produce and less consistent.

Actual NLFFF extrapolation limitation

- Magnetic helicity estimation is highly sensitive to extrapolation method: DeRosa et al. 2015
 - Helicity is a non local quantity
 - Differences between extrapolation in the whole domain leads to important variation of the helicity measure
- To a very large extent magnetic extrapolation is not a well posed problem and is largely underconstrained → next talk

 Obtaining quality/reliable extrapolations requires additional input data, e.g. to go single view point magnetogram

> → multi-view point magnetic field measurements allowed by PHI/Solar Orbiter → next talk by G. Valori

Thanks for your attention

Go Gherardo!

