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UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 92190 Meudon, France

3 University College London, Mullard Space Science Laboratory, Holmbury St. Mary,

Dorking, Surrey, RH5 6NT, United Kingdom

4 Institute of Solar-Terrestrial Physics SB RAS 664033, Irkutsk, PO box 291, Lermontov

street, 126a, Russia

5 Max-Plank-Institut für Sonnensystemforschung, 37077 Göttingen, Germany

6 Research Center for Astronomy and Applied Mathematics of the Academy of Athens, 4

Soranou Efesiou Street, 11527 Athens, Greece

7 W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA

94305-4085, USA

8 Institute of Physics, Univeristy of Graz, Universitätsplatz 5/II, 8010 Graz, Austria
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ABSTRACT

We study the writhe, twist and magnetic helicity of different magnetic flux

ropes, based on models of the solar coronal magnetic field structure. These

include an analytical force-free Titov–Démoulin equilibrium solution, non force-

free magnetohydrodynamic simulations, and nonlinear force-free magnetic field

models. The geometrical boundary of the magnetic flux rope is determined by

the quasi-separatrix layer and the bottom surface, and the axis curve of the

flux rope is determined by its overall orientation. The twist is computed by
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the Berger–Prior formula that is suitable for arbitrary geometry and both force-

free and non-force-free models. The magnetic helicity is estimated by the twist

multiplied by the square of the axial magnetic flux. We compare the obtained

values with those derived by a finite volume helicity estimation method. We find

that the magnetic helicity obtained with the twist method agrees with the helicity

carried by the purely current-carrying part of the field within uncertainties for

most test cases. It is also found that the current-carrying part of the model

field is relatively significant at the very location of the magnetic flux rope. This

qualitatively explains the agreement between the magnetic helicity computed by

the twist method and the helicity contributed purely by the current-carrying

magnetic field.

Subject headings: Sun: corona — Sun: magnetic topology — Sun: surface mag-

netism

1. Introduction

A magnetic flux rope is a key ingredient for various solar-activity models, such as fila-

ment/prominence eruptions, flares, and coronal mass ejections (CMEs). The terms magnetic

flux rope and magnetic flux tube are defined as a bundle of magnetic field lines of finite size

twisting around a common axis curve. When a flux tube is infinitesimally thin, it represents

a single magnetic field line. To study the equilibrium and stability of a magnetic flux rope,

it is crucial to know its force balance, free magnetic energy, and magnetic helicity. There

are various ways to quantify the force and energy of a magnetic flux rope based on theoret-

ical, numerical, and observational methods (e.g. Chen 1996; Lin et al. 1998; Régnier et al.

2002; Török & Kliem 2005; Kliem & Török 2006; Feng et al. 2013). The method of choice to

quantify the magnetic helicity of a flux rope is still an open issue, because there are various

uncertainties in observations, models, and methods. These include, e.g., limitations of cur-

rent techniques to measure and model the magnetic field in the solar atmosphere, difficulties

in quantifying the topological boundaries of flux ropes, as well as the uncertainty of helicity

computations.

Magnetic helicity quantitatively measures the geometrical complexity of a magnetic

field. A gauge invariant helicity measure for open magnetic configurations (with field lines

penetrating the boundaries) is defined by the relative magnetic helicity in finite volumes

(Berger & Field 1984; Finn & Antonsen 1985):

HV =

∫
V

(A+Ap) · (B−Bp)dV, (1)
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where B is the vector magnetic field in volume V , Bp is the reference magnetic field that

is usually selected as the potential field with the same normal magnetic field as B on the

boundaries of V , A is the vector potential of B with B = ∇ × A, and Ap is the vector

potential of the potential fieldBp. The relative magnetic helicity is a global quantity. Its local

density in an arbitrary volume does not have a physical meaning, because the vector potential

depends on the distribution of the field in the entire volume, and because adding a gauge

function to any vector potential would arbitrarily change the local helicity-density values.

However, magnetic helicity does have a local density per elementary flux tube, namely, the

field line helicity defined as the integral of A along a magnetic field line (Yeates & Hornig

2014, 2016; Russell et al. 2015). Besides the relative magnetic helicity in Equation (1), there

are some other expressions and interpretations of the magnetic helicity (Jensen & Chu 1984;

Hornig 2006; Low 2006, 2011; Longcope & Malanushenko 2008; Prior & Yeates 2014). Here,

we only focus on the relative magnetic helicity.

There are several practical ways to compute magnetic helicity either using a finite volume

method (Rudenko & Myshyakov 2011; Thalmann et al. 2011; Valori et al. 2012; Yang et al.

2013; Rudenko & Anfinogentov 2014; Moraitis et al. 2014), a twist number method (Guo et al.

2010, 2013), a helicity-flux integration method (Chae 2001; Pariat et al. 2005; Liu & Schuck

2012), or a connectivity-based method (Georgoulis et al. 2012). These methods differ in their

input magnetic field and in the way to calculate the magnetic helicity. The finite volume

method employs Equation (1) and requires the full 3D magnetic field vector information

as an input. The twist number method also requires the magnetic field in a 3D volume

but with the additional requirement that a magnetic flux rope is present. The helicity-flux

integration method requires a time series of two-dimensional (2D) vector magnetic field and

velocity maps as an input. Consequently, with this method, only the accumulation of the

magnetic helicity injected through a 2D surface can be computed. The connectivity-based

method requires only a single vector magnetic field map on the bottom boundary and as-

sumes that the magnetic polarities are magnetically connected over a minimal connection

length. A detailed description of all of these methods is presented in the first paper of a

series (Valori et al. 2016), where different implementations of the finite volume method are

also compared. The comparison of existing implementations of the flux integration method

and the connectivity-based method is the subject of a second paper (Pariat et al. 2017),

while a third paper of the series will implement different helicity methods on a particularly

observed eruptive solar active region (Georgoulis et al. 2017, in preparation).

The twist number method estimates the magnetic helicity of a magnetic flux rope by

computing the twist and axial magnetic flux. The twist measures the rotation of an individual

field line about the central axis of the flux rope (i.e., the axis curve). Figures illustrating

how the twist is measured can be found in Figure 1 of Berger & Prior (2006) and Figure 3
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of Prior & Berger (2012). When computing the helicity of isolated flux rope structures, one

basically ignores the magnetic field surrounding the structure, and its connection to the

field inside of the rope. However, it is still meaningful to compute the magnetic helicity

of a magnetic flux rope, for three reasons: first, the solar active-region corona could be

approximated by a major electric current channel embedded in a potential field using the

argument of Titov & Démoulin (1999). Second, the lateral boundary of a magnetic flux rope

is a magnetic flux surface without any magnetic flux penetrating it; therefore, the magnetic

helicity within the magnetic flux surface is conserved under an ideal evolution. Third, Berger

(2003) showed that HV can be decomposed into two separately gauge invariant components:

HV = HV,J + HV,JP , (2)

with

HV,J =

∫
V

(A−Ap) · (B−Bp)dV, (3)

HV,JP = 2

∫
V

Ap · (B−Bp)dV. (4)

HV,J measures the magnetic helicity contributed purely by the magnetic field that carries

local currents. The other part HV,JP is the mixed contribution of the magnetic helicity

between the potential magnetic field and the magnetic field generated by local currents. The

magnetic helicity of a magnetic flux rope would have a physical meaning if it contributed a

major part of HV,J in the entire volume V .

To guarantee the gauge invariance of the magnetic helicity, the input magnetic field

should be solenoidal. To quantify the solenoidal condition of a magnetic field, Valori et al.

(2013) proposed to use Thomson’s theorem, which decomposes the magnetic field into four

parts, namely, the solenoidal potential, solenoidal current-carrying, non-solenoidal potential,

and non-solenoidal current-carrying parts. Correspondingly, the associated magnetic energy

can also be decomposed into four terms, plus a fifth term accounting for mixed contributions.

If the total magnetic energy, including all of the aforementioned terms, is denoted by E, and

the total non-solenoidal energy (potential, current-carrying, mixed) is denoted by Ens (also

refer to Appendix A of Valori et al. 2016), the ratio between Ens and E can be used to

quantify how well the solenoidal condition is fulfilled. The numbers listed in Table 1 of

Valori et al. (2013) provide a quantitative comparison between Ens/E and < |fi| >, which

is the average of the absolute value of the fractional flux change in a numerical cell (refer to

Appendix C of Valori et al. 2013). We note that < |fi| > is another size-dependent measure

of the solenoidality of the field. For the test cases considered in Valori et al. (2013), if Ens/E

is less than 2%, < |fi| > is less than 2× 10−5 (see, e.g., the first three rows of their Table 1).
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An alternative method to assess the non-solenoidality of the field via the magnetic energy is

described in Moraitis et al. (2014).

In Valori et al. (2016), a preliminary comparison of the twist number method and the

finite volume method is presented. It was found that the magnetic helicity estimated by the

twist number method approximately matches the purely current-carrying part, namely HV,J ,

of the total relative magnetic helicity of the Titov–Démoulin model. It was also shown that

the magnetic helicity estimated by the twist number method matches HV,J better for higher

twist and spatial resolution. In order to progress in the quantification of the abilities of the

twist number method, here we will test how the twist number depends on the choice of the

axis of a magnetic flux rope in the Titov–Démoulin model. We provide a systematic study on

the performance of the twist number method when applied to various magnetic field models

and compare it to the results delivered from a finite volume method. We also provide an

analysis of the magnetic fields by splitting them into a potential part and a current-carrying

part, in order to explain why the magnetic helicity estimated by the twist number method

matches HV,J rather than HV .

The outline of the paper is as follows. The twist number method is described is Section 2.

Results of the method’s application to the Titov–Démoulin model (Titov & Démoulin 1999),

magnetohydrodynamic (MHD) numerical simulations (Leake et al. 2013, 2014), and nonlin-

ear force-free field (NLFFF) models (Savcheva et al. 2015, 2016) are presented in Section 3.

We finally provide a summary and make a discussion in Section 4.

2. The Twist Number Method

With the Titov–Démoulin model, MHD numerical simulations, and NLFFF models

computed by the flux rope insertion method, one can obtain 3D magnetic field models

hosting magnetic flux ropes. In order to quantify the magnetic helicity of these flux ropes,

one needs to determine their geometrical boundaries. The quasi-separatrix layer (QSL;

Priest & Démoulin 1995; Démoulin et al. 1996, 1997; Titov et al. 2002) is a useful concept

to serve such a purpose. QSLs are 3D thin volumes where the gradient of the magnetic field

line connectivity is large, as measured by the squashing degree Q (Démoulin et al. 1996;

Titov et al. 2002; Titov 2007). Pariat & Démoulin (2012) compared three different methods

and identified a best-performing method to compute the squashing degree Q in a 3D volume.

This method has been implemented by various authors and applied to analyze the magnetic

topology of magnetic fields derived by NLFFF extrapolations (Zhao et al. 2014; Yang et al.

2015, 2016; Liu et al. 2016). It has been shown that magnetic flux ropes are associated with

bald patches or hyperbolic flux tubes (Titov & Démoulin 1999; Titov et al. 2002). Bald
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patches are locations along the polarity inversion line where the field is shaped concave-up

and oriented tangent to the photosphere, whereas hyperbolic flux tubes are volumes defined

by the intersection of two or more QSLs. The QSLs associated with these topology structures

wrap the magnetic flux ropes and separate them from their surroundings. Guo et al. (2013)

also found that a magnetic flux rope wrapped by QSLs, based on an NLFFF model using

the optimization algorithm of Wiegelmann (2004).

Berger & Field (1984) have assigned the magnetic helicity a clear geometrical meaning.

They pointed out that magnetic helicity quantitatively measures the geometrical complexity

of magnetic field lines. If a magnetic configuration consists of a finite number, N , of flux

tubes, the magnetic helicity is determined by the linkage and knotting of different flux

tubes (mutual helicity), and by the writhe and twist of all of the individual flux tubes (self

helicity). For closed curves, the linking number, twist, and writhe are well defined as shown

in Berger & Prior (2006). The Gauss linking number measures the mutual linkage of two

curves x(s) and y(s′) that are parameterized by s and s′:

L =
1

4π

∮
x

∮
y

Tx(s)×Ty(s
′) · r

|r|3
ds′ ds, (5)

where Tx(s) and Ty(s
′) are the unit tangent vector to x(s) and y(s′), respectively, and r is

the position vector with r = x(s)−y(s′). The writhe measures the non-planarity of a single

curve:

W =
1

4π

∮
x

∮
x

T(s)×T(s′) · r

|r|3
ds′ ds, (6)

where the position vector r points from x(s′) to x(s) such that r = x(s)− x(s′). The twist

measures the rotation amount of one curve y(s′) about the other x(s):

T =
1

2π

∮
x

T(s) ·V(s)× dV(s)

ds
ds, (7)

where V(s) is a unit vector normal to T(s) and pointing from x(s) to y(s′). The linking

number and writhe are global quantities which involve double integrals of geometrical pa-

rameters along the curves. The linking number of two closed curves is always an integer.

The linking number of a tube or ribbon (the surface between two non-intersecting curves

forms a ribbon) equals the sum of the twist and writhe as demonstrated by the Cǎlugǎreanu

theorem (e.g., Fuller 1978; Moffatt & Ricca 1992; Berger & Prior 2006):

L = W + T . (8)

Magnetic field lines can be regarded as infinitesimally thin flux tubes and represented

by curves in 3D space. In a closed configuration where no magnetic flux penetrates the
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boundaries, the total magnetic helicity is quantitatively expressed as the sum of the self

and mutual helicity contributed by the N flux tubes (Berger & Field 1984; Démoulin et al.

2006):

H ≈
N∑
i=1

LiΦ
2
i +

N∑
i=1

N∑
j=1,j ̸=i

Li,jΦiΦj , (9)

where Li denotes the sum of the twist and writhe of flux tube i with magnetic flux Φi, namely,

Li = Wi + Ti, and Li,j denotes the linking number of two flux tubes i and j, respectively.

For open configurations, where flux penetrates the volume’s surface, Equation (9) still

holds, only its meaning is changed. The magnetic helicity of open configurations is gauge

invariant and physically meaningful in context with the definition of a relative magnetic helic-

ity. To be applicable also to open curves, Démoulin et al. (2006) proposed an alternative def-

inition of the linking number Li,j following the concept of helicity injection. Berger & Prior

(2006) also proposed an alternative definition of the writhe for open curves. They used a

directional expression, e.g., along the vertical direction z, for the writhe to define a polar

writhe Wp. The key idea is that a curve is split into n pieces by its local turning points

where ds/dz = 0, and the double integration in Equation (6) can be expressed as the sum

of a single integration. The polar writhe includes a local part, Wpl, and nonlocal part, Wpnl

(see also, Prior & Neukirch 2016):

Wp = Wpl +Wpnl, (10)

Wpl =
n∑

i=1

1

2π

∫ zmax
i

zmin
i

z ·Ti × dTi

dz

1 + |z ·Ti|
dz, (11)

Wpnl =
n∑

i=1

n∑
j=1

i ̸=j

σiσj

2π

∫ zmax
ij

zmin
ij

dΘij

dz
dz, (12)

where σi indicates whether the i-th piece of the curve exists at height z, and whether it is

rising or falling. If z ∈ (zi, zi+1) and ds/dz > 0, σi = 1; if z ∈ (zi, zi+1) and ds/dz < 0,

σi = −1; if z /∈ (zi, zi+1), σi = 0. And Θij is the azimuth angle of the position vector

pointing from xi(z) to xj(z). Equations (10), (11), and (12) have been adopted to compute

the writhe of open curves, such as the helical structures in the corona (Török et al. 2010;

Prior & Berger 2012).

Since the twist is a local quantity with a well defined twist density:

dT
ds

=
1

2π
T ·V × dV

ds
, (13)

the formula for closed curves is still applicable for open curves. Equation (7) is the integration

of Equation (13) along an axis curve. It is suitable for smooth curves in arbitrary geometries
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without self intersection. Therefore, it is also suitable for both force-free and non-force-free

models. Equation (7) has been applied to compute the twist in Guo et al. (2010, 2013),

Xia et al. (2014), and Yang et al. (2016).

The twist number method is designed to estimate the magnetic helicity of a single highly

twisted magnetic flux rope. Two major approximations are adopted for this method. On

the one hand, the highly twisted magnetic structure is considered as a single flux tube, thus

the mutual helicity between the flux tube and the surrounding magnetic field is omitted.

This approach is motivated by observations of solar eruptions, since usually only one major

magnetic flux rope is present in an active region. On the other hand, the magnetic helicity

contributed by the writhe is also omitted. Observations and models of magnetic flux rope

structures and evolutions suggest that they are usually not highly kinked due to low twists of

magnetic field lines. The kink instability is not triggered in these cases. With the above two

approximations, the magnetic helicity can be approximated by the twist of a single highly

twisted structure as:

Htwist ≈ T Φ2 , (14)

where T and Φ are the twist number and magnetic flux of the single magnetic flux rope. For

the cases possessing highly kinked magnetic flux ropes (e.g., Török & Kliem 2005; Guo et al.

2010), the magnetic helicity contributed by the writhe cannot be omitted, and the twist

number method is not applicable to those structures that have significant writhe. But for

the cases considered below, we will show that the writhe is small compared to the twist.

3. Results

The twist number method is applied to three different magnetic field models, all of them

enclosing a magnetic flux rope. These are the Titov–Démoulin model (Titov & Démoulin

1999) in Section 3.1, MHD numerical simulations (Leake et al. 2013, 2014) in Section 3.2,

and NLFFF models (Savcheva et al. 2015, 2016) in Section 3.3. These models provide dif-

ferent challenges for the magnetic helicity estimation method. The Titov–Démoulin model

is semi-analytically computed and serves a static 3D magnetic field solution, within which

the existing flux rope is easily determined. The MHD simulations are time dependent while

the NLFFF models are also static. But both are computed numerically and the flux rope

structures are more complex than that of the Titov–Démoulin model. For example, the flux

rope in the MHD simulations are more extended than that in the Titov–Démoulin model,

and possess a lower twist, causing larger uncertainties in the computed twist helicity values.

Similarly to the MHD simulations, the flux ropes in the NLFFF models have more compli-

cated boundaries than that of the Titov–Démoulin model, also increasing the uncertainty in
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the computation of the magnetic helicity.

Some tests of the twist number method on the Titov–Démoulin model have already

been performed and presented in Section 9.1 of Valori et al. (2016). In this paper, we pro-

vide additional results for one case of the Titov–Démoulin model to provide more detailed

information on the twist number method, such as the 3D QSL structure associated with

the magnetic flux rope and the dependence of the twist on the position of the axis. We also

provide a systematic analysis of the magnetic helicity computed by the twist number method

for MHD and NLFFF models and compare the results with the finite volume method.

3.1. Titov–Démoulin Model

The dataset of the Titov–Démoulin model is similar to the one used in Valori et al.

(2016). The reader is referred to that study for further details on the magnetic field data. To

derive the twist of a magnetic flux rope, we need its geometrical information, i.e., its boundary

and axis curve. A magnetic flux rope is usually surrounded by a QSL since it is usually associ-

ated with bald patches or hyperbolic flux tubes, where the connections of magnetic field lines

change rapidly (e.g., Titov & Démoulin 1999; Guo et al. 2013; Liu et al. 2016; Zhao et al.

2016). For the magnetic flux rope as shown in Figure 1, its boundary is determined by the

bottom boundary and the QSLs. We adopt the method proposed by Pariat & Démoulin

(2012) to compute the 3D distribution of the squashing degree (Titov et al. 2002; Titov

2007), Q, where large Q values (with Q ≫ 2) indicate the location of QSLs. Figure 1 and

the supplementary movie display the QSLs and some magnetic field lines in the magnetic

flux rope. The model configuration used here is identical with the “TD-N3-0.06” case in

Valori et al. (2016), with the model flux rope possessing a twist of about three full turns

around its axis. It is clear to see that QSLs surround some magnetic field lines, which are

regarded as the constituent part of the magnetic flux rope.

In order to determine the axis of the model flux rope, we make advantage of the sym-

metrical properties of its geometry. We assume the axis of the magnetic flux rope to be

aligned with the y-axis, i.e., lying on a plane and thus possessing zero writhe. We first

consider Q within a vertical slice lying on the xz-plane at y = 0. We delineate the projected

boundary of the flux rope, based on the largest values of Q (Figure 2(a)) and assume all

points within this boundary to be part of the flux rope. The latter can be used to compute

the axial magnetic flux of the flux rope, in the form Φ =
∫ ∫

Bydxdz. If we assume that the

magnetic field and the length are normalized by B0 and L0 in the Titov–Démoulin model,

respectively, the magnetic flux of the flux rope is Φ = 0.17B0L
2
0. Then, the axis of the flux

rope is determined as the magnetic field line with the minimum value of Br/|By|, where



– 10 –

Br =
√

B2
x +B2

z , oriented almost perpendicular to the xz-plane (red dot in Figure 2(a)).

The twist of each sample field line (their cross sections with the vertical slice are in-

dicated by blue crosses in Figure 2(a)) as a function of distance from the axis curve of the

flux rope is displayed in Figure 2(b), represented by red dots. It shows that the twist first

increases, until r ≈ 0.24L0, and decreases for locations further away from the axis curve.

Though the sample field lines obviously adhere to a different amount of twist, in order to

use Equation (14), we aim to find a single number which quantifies the overall twist of the

magnetic flux rope, where we use the arithmetic average of the field line’s twist number.

Furthermore, the standard deviation of the twists of all sample field lines quantifies the

spread of the twists around their average number, thus can be regarded as an uncertainty

measure. We find an average twist of −3.0± 0.7 turns, and using Equation (14), a helicity

of Htwist = (−0.087±0.020)B2
0L

4
0. The writhe of the axis curve is computed based on Equa-

tions (10), (11), and (12) using a code available online1. We find Wp = −8.6× 10−4, which

is very small compared to the twist of the magnetic flux rope. It furthermore justifies the

geometrical method used to determine the axis as perpendicular to the xz-plane.

In order to test the influence of the location of the axis curve of the flux rope on the

result, we redefine its location of the intersection with the xz-plane at three different positions

(other than that marked by the red dot in Figure 2(a)). The twist numbers in Figure 2(b)

show that the average twists with axes at arbitrarily selected positions are smaller compared

to the firstly analyzed situation, where the axis possesses the minimal poloidal magnetic

flux. Furthermore, in the cases with displaced axis curves, the distributions of the twist

numbers are much less coherent that the latter. This highlights how important the precise

determination of the axis position is for a reliable estimation of its twist. In the TD-N3-0.06

case, when the axis is defined at the symmetrical position as indicated by the red dot in

Figure 2(a), the magnetic helicity computed by the twist method is closest to that derived

by the finite volume method, which is −0.090B2
0L

4
0 as listed in Table 6 of Valori et al. (2016).

3.2. MHD Numerical Simulated Models

TwoMHDmodels constructed by Leake et al. (2013) and Leake et al. (2014) are adopted

here to extract the 3D magnetic field for the computation of magnetic helicity. The MHD

models use the visco-resistive MHD equations to simulate a magnetic flux rope emergence

from the upper convection zone into the corona. The two models differ in the strength and

orientation of the overlying dipolar coronal magnetic field, which results in a stable (i.e.,

1https://www.maths.dur.ac.uk/~ktch24/code.html
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non-eruptive, named JL stable case hereafter) and unstable (i.e., eruptive, named JL un-

stable case hereafter) configuration for each case. From the original simulation datasets,

only the coronal domain is extracted and the magnetic field is interpolated onto a uniform

grid (for details see Valori et al. 2016). We select the following snapshots for the compu-

tation of magnetic helicity, namely, t/t0 = 30, 50, 85, 120, 155, 190 for the stable case, and

t/t0 = 30, 50, 80, 110, 140, 150 for the unstable case, where t0 is the normalization factor for

time.

Figures 3(a) and (b) show the QSLs and some selected magnetic field lines for the JL

stable case at the time t/t0 = 85 and for the JL unstable case at the time t/t0 = 110. The

involved basic configuration for both cases consist of highly sheared and twisted field lines

surrounded by a prominent QSL. All field lines within the QSL are regarded as a coherent

magnetic flux rope. The slice for the computation of Q is placed within the xz-plane,

centered at the middle point between all of the footpoints of the flux rope. Figure 4 displays

the evolution of Q within the same slice as a function of time for the JL stable case at times

t/t0 = 30, 50, 85, 120, 155, 190. Evidently, the QSL rises and expands over time. Similar to

the Titov–Démoulin model, the axis of the magnetic flux rope is determined as the magnetic

field line that is oriented most perpendicular with respect to the vertical slice. As shown in

Figure 4, the axis of the magnetic flux rope also rises with time. Table 1 lists the writhe of

each axis curve computed with Equations (10), (11), and (12). Some field lines are selected

randomly for the computation of the twist numbers within the QSL, their cross sections with

the xz-plane indicated by the blue plus signs in Figure 4.

Figure 5 displays the distributions of the twist numbers for the sample field lines as

a function of distance to the axis curve of the flux rope, for the same time instances as

before. In general, the field line closer to the axis possesses a larger twist. The average

twist for each snapshot is indicated in Figure 5 and listed in Table 1. The magnetic fluxes

within the QSL for each snapshot are also computed within the selected slices and listed in

Table 1. Then, the magnetic helicity is computed by Equation (14) and listed in Table 1.

The total relative magnetic helicity HV has been computed in Valori et al. (2016) with six

different volume helicity implementations, revealing a very small spread in the obtained

helicity values. Therefore, in the following, we use the results obtained with the method of

Valori et al. (2012), based on the DeVore gauge, here for comparison. Together with the total

relative magnetic helicity HV , the purely current-carrying part HV,J are also computed with

the DeVore gauge and listed in Table 1. A careful comparison shows that Htwist matches

HV,J within the uncertainties for most snapshots except at t/t0 = 50 and 85. The means of

Htwist/HV,J and Htwist/HV for the JL stable cases (except the case JL-S-T30 where HV,J

and HV are zero) are 1.99 and 0.16, respectively. The case JL-S-T85 contributes a large

ratio of 5.88 for Htwist/HV,J . Excluding this case, the mean of Htwist/HV,J for the other
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cases are 1.01. To compare the writhe and twist, we compute the mean of |Wp/T |, which
is 0.089 for all cases except the JL-S-T30 case. The flux rope has barely emerged for the

JL-S-T30 case and only a small portion is above the z = 0 boundary, which might introduces

a relatively large error in measuring the writhe and twist. We note that the uncertainties

are quite large compared with the Titov–Démoulin cases in Valori et al. (2016). In the JL

cases, the structure of the flux rope is more extended than that in the Titov–Démoulin

cases, resulting in the twist values varying significantly across the flux rope (hence, a large

dispersion and standard deviation). The ratio Ens/E is listed in the last column of Table 1,

which shows that Ens only contributes (at most) a few percent of the total magnetic energy.

Based on the analysis in Valori et al. (2016), we conclude that the error on helicity values

due to the violation of the solenoidal property is small enough such that our conclusions are

not affected by it.

Following Equations (2), (3) and (4), the magnetic field helicity can be decomposed into

the purely current-carrying part, and another part contributed by the potential field and the

field generated by local currents. The above results show that the magnetic helicity, Htwist,

computed by the twist method favorably compares with HV,J , the magnetic helicity purely

contributed by the current-carrying part. To study the reason why Htwist and HV,J coincides

within a magnetic flux rope, we decompose the magnetic field B into a potential part, Bp,

and a current-carrying part BJ , with B = Bp + BJ . Figure 6 displays the distribution of

log(|B|/|BJ |) on the same slice as that for the squashing degree Q. Comparing with the

Q map in Figure 4, we find that the regions where BJ contributes a major part of the

total magnetic field, namely, log(|B|/|BJ |) is around 0, are mainly located within the QSL

surrounding the magnetic flux rope. Therefore, the magnetic helicity computed by the twist

method in the magnetic flux rope agrees with the helicity purely contributed by the current-

carrying part for most snapshots. The result shown in Figure 6(b) is an exception. The

region where log(|B|/|BJ |) around 0 is outside of the QSL in Figure 4(b). This is because

the QSLs generally do not strictly correspond to the boundary of BJ .

We also compute the magnetic helicity with the twist number method for the JL unstable

case. The squashing degree Q is computed on a slice as shown in Figure 3(b). The evolution

of theQmap at snapshots t/t0 = 30, 50, 80, 110, 140 and 150 is shown in Figure 7. A magnetic

flux rope is defined within the QSL delineated by large Q values. The magnetic flux rope

first rises (Figures 7(a)–(d)), then detaches from the bottom boundary (Figure 7(e)), and

finally moves out of the selected area (Figures 7(f)). The axis of the magnetic flux rope

is determined by the magnetic field line that is orient most perpendicular with respect to

the vertical slice along the xz-plane. The writhes of the axes at different times are listed

in Table 2. Some sample field lines are randomly selected within the QSL surrounding the

magnetic flux rope. In Figure 7(f), we find that the axis of the magnetic flux rope has
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been propelled outside of the region of interest. Therefore, we do not compute the magnetic

helicity for this snapshot.

The distributions of the twist numbers at t/t0 = 30, 50, 80, 110 and 140 along the dis-

tances to the axes are displayed in Figure 8. Similar to the JL stable case, the twist also

decreases from the axis to a distance further away from it. The average of the twist numbers

is displayed in Figure 8 and listed in Table 2, where the magnetic flux and the magnetic

helicities computed by the twist number method and finite volume method are also listed.

The results show that Htwist matches HV,J within the uncertainties at t/t0 = 30, 50, and

80, while Htwist is less than HV,J at t/t0 = 110 and 140. The means of Htwist/HV,J and

Htwist/HV for the JL unstable cases (except the case JL-U-T30 where HV,J and HV are

zero) are 0.58 and 0.35, respectively. The mean of |Wp/T | is 0.091 for all the JL unstable

cases except the JL-U-T30 case at t/t0 = 30, at which time the writhe is large compared

to its twist. We check its axis curve and find that it is highly coiled. However, it must be

noted that t = 30t0 is a very early time in the emergence evolution referring to, e.g., Figure

2 in Leake et al. (2014), where the proper identification of the axis might be prone to larger

fluctuations. The ratio Ens/E listed in the last column of Table 2 indicates that the magnetic

energy produced by the non-solenoidal part only contributes (at most) a few percent of the

total magnetic energy.

To study the relationship between Htwist and HV,J , we also decompose the magnetic

field B of JL unstable model into a potential part, Bp, and a current-carrying part BJ .

Figure 9 displays the distribution of log(|B|/|BJ |) on the same slice (Figure 3(b)) as that

for the squashing degree Q. It is found that BJ contributes the major part of B mainly

at three different places, namely, the front of the magnetic flux rope, the bottom boundary,

and the current sheet stretched by the erupting magnetic flux rope. This point is different

from the JL stable model, where BJ only contributes the major part close to the bottom

boundary and within the magnetic flux rope (Figure 6). This difference also explains why

Htwist within the magnetic flux rope deviates from HV,J in the whole computation box. This

is because there is large BJ outside of the magnetic flux rope as shown in Figures 9(d) and

(e). Figure 9(b) is also an exception. The region where log(|B|/|BJ |) around 0 is outside of

the QSL in Figure 7(b).

3.3. Nonlinear Force-Free Field Models

In this section, we compare the results obtained with the twist number method with

that obtained with the aforementioned DeVore volume helicity method, using NLFFF ex-

trapolations. In particular, we use two of the active regions studied in Savcheva et al. (2015,
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2016), one on 2007 February 12 and the other on 2010 August 7. The flux rope insertion

method (van Ballegooijen 2004) is used to produce the NLFFF models. More details of this

method are provided in Su et al. (2011) and Savcheva et al. (2012b). The flux rope insertion

method produces models that are in a wedge-shaped volume and in the spherical coordinate

system. However, the helicity computation is performed in Cartesian coordinates, so we

transform the spherical to Cartesian coordinates of the grid as in Savcheva et al. (2012a).

The active region on 2007 February 12 produced a flare with a GOES class smaller than

B starting at 07:40 UT. More details on the observations can be found in Savcheva et al.

(2015). Some selected magnetic field lines and QSLs on a slice of the NLFFF model are

displayed in Figure 10(a). The computation box in the range [199.3, 420.4]×[−256.4,−42.1]×
[0.0, 112.3] Mm is resolved into a uniform Cartesian grid of 227×220×126 pixels, with (0, 0, 0)

the coordinates of the central point on the disk. Since the axis of the magnetic flux rope is

not along the x- or y-axis, the slice for the computation of Q is selected at a oblique direction

as shown in Figure 10(a). We assume that the magnetic flux-rope axis is horizontal at the

position where we cut the slice. And the normal direction of the slice points along the overall

orientation of the flux rope delineating the flux-rope axis.

The axis of the magnetic flux rope is determined similarly to the previous cases, namely,

it is the field line oriented most perpendicular with respect to the selected slice. This

choice is supported by the resulting small writhe, as listed in Table 3. The red dot in

Figures 11(a) and (b) indicates the intersection of the axis of the magnetic flux rope with

the vertical slice. However, there are some ambiguities in determining the body of the

magnetic flux rope, because there are many interlaced QSLs on the cross section as shown

in Figures 11(a) and (b). This seems common for models constructed by NLFFF models

(e.g., Savcheva et al. 2012a,b; Guo et al. 2013) since the magnetic field in observations is

more complicated than in analytic and MHD models. The observed magnetic fields are

usually distributed intermittently, which would introduce many bald patches (Savcheva et al.

2012a) or magnetic null points (e.g., Schrijver & Title 2002). For comparison, we select two

connectivity domains to define the body of the magnetic flux rope, one in an inner region

surrounded by the QSL (Figure 11(a)) and the other in a larger region surrounded by the

outermost QSL (Figure 11(b)). Some sample field lines, their intersection with the vertical

slice denoted by blue crosses, are randomly selected in the two regions, respectively.

The twist numbers of the sample field lines for the two different regions are displayed

in Figures 12(a) and (b), as a function of their distances of the sample field lines to the axis.

The averages of the twist numbers are also shown in Figures 12(a) and (b) and listed in

Table 3 as the smaller region case (NLFFF-S-20070212) and larger region case (NLFFF-L-

20070212), respectively. Combined with the magnetic fluxes, the magnetic helicity, Htwist,



– 15 –

can be computed by Equation (14). We find that Htwist in the NLFFF-L-20070212 case

matches HV,J within the uncertainties.

Similar to the above analysis, some selected field lines and a Q map for the sigmoidal

active region on 2010 August 7 are shown in Figure 10(b). Figures 11(d) and (e) show

two vertical slices, with different domains selected to outline the body of the flux rope.

The distributions and averages of the twist numbers are displayed in Figures 12(c) and

(d). We list the writhe, twist, magnetic flux, and magnetic helicity (computed by the twist

method and finite volume method) for both the smaller region (NLFFF-S-20100807) and

the larger region (NLFFF-L-20100807) in Table 3. It is found that Htwist is close to HV,J

for the NLFFF-S-20100807 case. The absolute values of the twist and magnetic flux for

the NLFFF-L-20100807 case become even smaller than the NLFFF-S-20100807 case, which

derives a small absolute value of Htwist. This is because the cross section in the NLFFF-L-

20100807 case is too large. Many field lines far away from the axis become potential, which

yields small twist numbers. At the same time, some magnetic field lines crossing the selected

slice reverse their directions. This effect cancels the magnetic flux on the selected slice.

Table 3 also lists the ratio between the magnetic energy contributed by the non-solenoidal

field and the total magnetic energy. This ratio is below a few percent.

The distributions of log(|B|/|BJ |) for the cases on 2007 February 12 and 2010 August

7 are shown in Figures 11(c) and (f), respectively. Comparing Figures 11(a) and (b) with

Figure 11(c), we find that BJ contributes the major part within the larger region (NLFFF-

L-20070212) surrounded by the QSL. It explains why Htwist of the NLFFF-L-20070212 case

equals HV,J . Comparing Figures 11(d) and (e) with Figure 11(f), we also find that BJ

contributes the major part within the larger region (NLFFF-L-200100807) surrounded by

the QSL. But Htwist is close to HV,J in the smaller region (NLFFF-S-200100807). We have

found that this is because the considered region is too large and the twist and magnetic flux

for the flux rope are not accurate. Table 3 also shows that the absolute value of Htwist in

the smaller region (NLFFF-S-20100807) is less than the absolute value of HV,J . This point

can also be explained by the distribution of log(|B|/|BJ |) as shown in Figure 11(f). The

dominant region of BJ , where log(|B|/|BJ |) is close to 0, is larger than the smaller region

as shown in Figure 11(d).

4. Summary and Discussion

We present a first systematic analysis of the magnetic helicity computed using the twist

number method (Guo et al. 2010, 2013), and relate its performance to an existing and well-

tested finite volume method. The input magnetic field configurations are either in the form
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of analytical (i.e., Titov–Démoulin) or numerical (MHD and NLFFF) models. The magnetic

field models can be force-free (Titov–Démoulin and NLFFF) or not (MHD simulations). Our

results suggest that the twist number method delivers helicity estimates, Htwist, in line with

HV,J (the magnetic helicity purely contributed by the current-carrying part) derived using

a finite volume method, within the uncertainties for the semi-analytic models and MHD

simulation cases. It also delivers similar values for NLFFF cases, given that the flux rope

boundary is selected carefully.

To provide a quantitative comparison of Htwist, HV,J , and HV , we make some statistics

for the ratio of the following three pairs of variables, namely, ϵtwist/Htwist (where ϵtwist marks

the error of Htwist), Htwist/HV,J , and Htwist/HV . For the JL stable and unstable models,

we exclude the cases JL-S-T30 and JL-U-T30, where all the values are zero and the ratios

are not defined. For the NLFFF models, we only consider NLFFF-L-20070212 and NLFFF-

S-20100807, where Htwist is closer to HV,J for each case than the other two cases. The

means of ϵtwist/Htwist, Htwist/HV,J , and Htwist/HV for all the considered cases are 51.1%,

125.6%, and 23.4%, respectively. We find that within the errors of Htwist, its value matches

HV,J better than HV . The agreement within error bars of Htwist and HV,J is valid for most

models as demonstrated here and also in Valori et al. (2016). The physical reason is that

in a magnetic flux rope the magnetic field is mainly contributed by the local current. For

those cases where Htwist deviates from HV,J , the magnetic field is either fully dynamical

(JL-U-T110 and JL-U-T140 as listed in Table 2) or topologically very complicated (NLFFF-

S-20100807 and NLFFF-L-20100807 as listed in Table 3). In these cases, the local currents

extend beyond the volume in the magnetic flux rope structure.

To quantify the contribution of the writhe to the self helicity in the test cases, we com-

pute the polar writhe that is applicable to open curves (Berger & Prior 2006; Prior & Neukirch

2016). The mean of |Wp/T | is 0.12 for all the cases listed in Tables 1, 2, and 3 except the

cases JL-S-T30, JL-U-T30, NLFFF-S-20070212, and NLFFF-L-20100807. Therefore, the

magnetic helicity contributed by the twist is the dominant component over the part by

the writhe. Together with the large uncertainties in computing the twist number, which is

51.1% on average, the contribution of the writhe to the self helicity could be neglected in

these test cases. For the cases with large writhe, the self helicity should be computed with

Hself = (Wp + T )Φ2, where both the writhe and twist are included.

In terms of the fields topology, the magnetic helicity is divided into a self-helicity and

mutual helicity as expressed in Equation (9). Where the self-helicity is contributed by both

the twist of a sample field line referred to its axis and the writhe of the axis itself. In this

paper, we compute the helicity contributed by the twist; meanwhile, the helicity contributed

by the writhe could be neglected, since most magnetic flux ropes do not have an obvious
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kink. Thus, Htwist here is a good proxy for the self-helicity. While for the finite volume

method as expressed in Equations (2), (3), and (4), the magnetic helicity is divided by the

purely current-carrying part, HV,J , and another part HV,JP . Since we have found that Htwist

(equivalent to the self-helicity in this paper) coincides with HV,J , it seems that HV,J could

also be interpreted as the self-helicity. We emphasize, however, that this interpretation is

to be with caution, because the self-helicity is only a concept to help us to understand the

magnetic helicity if one could regard the magnetic field to be composed by a finite number of

flux tubes (or, flux ropes in case of an existing local current). As explained in Démoulin et al.

(2006), the self-helicity becomes negligible when the number of the flux tubes, N , approaches

infinity, because the ratio between the self-helicity and the mutual helicity in Equation (9)

decreases as 1/N .

Although the self-helicity “vanishes” when the magnetic field is thought of being com-

posed of an infinite number of flux tubes, the concept is still useful. As demonstrated in

this paper, we could derive the self-helicity for a very extended (with finite size) magnetic

flux rope. And the results are comparable to those derived by the finite volume method.

Under the assumption of a finite number of flux tubes, we might improve the computation

with the aid of the mutual helicity method, e.g., the internal angle method proposed in

Démoulin et al. (2006). With this method, it is possible to divide an extended magnetic

flux rope into smaller flux tubes, thus derive more accurately the magnetic helicity. Some

preliminary tests have been presented in Yang et al. (2016). Alternatively, one may use the

method of the field line helicity (Yeates & Hornig 2014, 2016; Russell et al. 2015) to study

the helicity flux distribution per field line. This method distinguishes the internal topology

of a magnetic flux rope, and its integration over a cross section provides the total magnetic

self-helicity. Corresponding in-depth studies are envisaged in the future.
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Fig. 1.— QSLs and magnetic field lines in the magnetic flux rope of the Titov–Démoulin

model, adhering to a twist of about three turns. Semi-transparent layers surrounding the

magnetic field lines display the QSLs. Gray-scale images on the bottom show the vertical

magnetic field Bz. The magnetic field lines are colored by the magnetic field strength |B|.

(A movie attached to this figure is available online.)
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Fig. 2.— (a) Vertical slice of the Q map in the xz-plane at y = 0, namely, in the middle of

the flux rope along its axis. Red dot, orange square, cyan diamond, and green triangle signs

indicate the intersections of the axis curves with the xz-plane for different test setups, in

order to compare the effect of their relative locations on the retrieved flux rope twist. Blue

plus sign indicates the intersections of the sample field lines, used to calculated the average

flux rope twist, with the xz-plane. (b) Twist of the sample magnetic field lines along the

distance, r from the flux-rope axis. Symbols with different colors and signs represent the

twist distribution for varying positions of the axis (shown in panel (a), using the same color

and sign notation).
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Fig. 3.— QSL and magnetic field in the magnetic flux rope (a) for the JL stable case at the

time t/t0 = 85, (b) for the JL unstable case at the time t/t0 = 110. The gray-scale image on

the bottom show the vertical magnetic field Bz. The magnetic field lines are colored by the

magnetic field strength |B|.

(Two movies attached to this figure are available online.)
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Fig. 4.— Distribution of the squashing degree Q in the xz-plane at y = 0, namely, in the

middle of the flux rope along its axis, for the JL stable models with t/t0 = (a) 30, (b) 50, (c)

85, (d) 120, (e) 155, and (f) 190. Grey solid line delineates the boundary of the flux rope.

A red dot indicates the position of the axis. Blue plus signs indicate the intersection of the

sample field lines, used to retrieve the flux rope twist, with the xz-plane.
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Fig. 5.— Twist of the sample magnetic field lines along the distance, r, which is measured

in the xz-plane at y = 0, for the JL stable models with t/t0 = (a) 30, (b) 50, (c) 85, (d) 120,

(e) 155, and (f) 190.
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Fig. 6.— Distribution of log(|B|/|BJ |), where BJ = B−Bp, for the JL stable case at t/t0 =

(a) 30, (b) 50, (c) 85, (d) 120, (e) 155, and (f) 190. Grey solid line, which is the same as

that in Figure 4, delineates the boundary of the flux rope.
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Fig. 7.— Distribution of the squashing degree Q in the xz-plane at y = 0, namely, in the

middle of the flux rope along its axis, for the JL unstable models with t/t0 = (a) 30, (b)

50, (c) 80, (d) 110, (e) 140, and (f) 150. Grey solid line delineates the boundary of the flux

rope. A red dot indicates the position of the axis. Blue plus signs indicate the intersection

of the sample field lines, used to retrieve the flux rope twist, with the xz-plane.
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Fig. 8.— Twist of the sample magnetic field lines along the distance, r, which is measured

in the xz-plane at y = 0, for the JL unstable models with t/t0 = (a) 30, (b) 50, (c) 80, (d)

110, and (e) 140.
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Fig. 9.— Distribution of log(|B|/|BJ |), where BJ = B − Bp, for the JL unstable case at

t/t0 = (a) 30, (b) 50, (c) 80, (d) 110, (e) 140, and (f) 150. Grey solid line, which is the same

as that in Figure 7, delineates the boundary of the flux rope.
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Fig. 10.— QSL and magnetic field lines in the magnetic flux rope for the magnetic extrapo-

lation models (a) at 06:41 UT on 2007 February 12 (b) at 17:00 UT on 2010 August 7. The

color-scale image on the bottom show the vertical magnetic field Bz. The magnetic field

lines are colored by a green color.

(Two movies attached to this figure are available online.)
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Fig. 11.— Vertical slices of the Q map that are perpendicular to the axes of the flux ropes,

for the NLFFF models at (a, b) 06:41 UT on 2007 February 12, and (d, e) 17:00 UT on 2010

August 7. Grey solid line delineates the boundary of the flux rope. Red dot indicates the

position of the axis. Blue plus sign indicates the starting points of the sample field lines.

Distribution of log(|B|/|BJ |), where BJ = B − Bp, for the slices at (c) 06:41 UT on 2007

February 12, and (f) 17:00 UT on 2010 August 7.
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Fig. 12.— Twist of the sample magnetic field lines along the distance, r from the flux-rope

axis, which is measured in the Q slice plane as shown in Figure 10, for the NLFFF models

on (a) 2007 February 12 and the sample field lines in a small area as shown in Figure 11(a),

(b) 2007 February 12 and the sample field lines in a large area as shown in Figure 11(b), (c)

2010 August 7 and the sample field lines in a small area as shown in Figure 11(d), and (e)

2010 August 7 and the sample field lines in a large area as shown in Figure 11(e).
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Table 1: Writhe, Twist, and Magnetic Helicity of the JL Stable Models.

Models Writhe Twist Magnetic Flux Htwist HV HV,J Ens/E

(Turn) (Turn) (B0L
2
0) (103B2

0L
4
0) (103B2

0L
4
0) (103B2

0L
4
0)

JL-S-T30 0.0033 0.02± 0.00 0.0 0.0± 0.0 0.00 0.00 0.058

JL-S-T50 -0.013 0.47± 0.06 22 0.2± 0.0 1.74 0.13 0.017

JL-S-T85 0.029 0.32± 0.22 55 1.0± 0.6 6.98 0.17 0.011

JL-S-T120 0.067 0.42± 0.38 63 1.6± 1.5 11.2 1.71 0.007

JL-S-T155 0.061 0.56± 0.37 72 2.9± 1.9 14.3 3.41 0.005

JL-S-T190 0.037 0.61± 0.27 78 3.6± 1.6 16.6 4.90 0.005

Table 2: Writhe, Twist, and Magnetic Helicity of the JL Unstable Models.

Models Writhe Twist Magnetic Flux Htwist HV HV,J Ens/E

(Turn) (Turn) (B0L
2
0) (103B2

0L
4
0) (103B2

0L
4
0) (103B2

0L
4
0)

JL-U-T30 -0.63 0.16± 0.07 0.0 0.0± 0.0 0.00 0.00 0.058

JL-U-T50 0.00020 0.35± 0.20 25 0.2± 0.1 0.40 0.25 0.011

JL-U-T80 0.043 0.29± 0.21 49 0.7± 0.5 1.49 0.92 0.008

JL-U-T110 0.12 0.76± 0.36 35 0.9± 0.4 2.77 1.67 0.005

JL-U-T140 -0.035 0.62± 0.26 26 0.4± 0.2 3.85 1.68 0.004



– 35 –

Table 3: Writhe, Twist, and Magnetic Helicity of the NLFFF Models.

Models Writhe Twist Magnetic Flux Htwist HV HV,J Ens/E

(Turn) (Turn) (1020Mx) (1040 Mx2) (1040 Mx2) (1040 Mx2)

NLFFF-S-20070212 0.22 1.14± 0.15 1.8 3.6± 0.5 106± 11 20.5± 0.2 0.043

NLFFF-L-20070212 0.22 0.57± 0.32 5.8 19.5± 11.0 106± 11 20.5± 0.2 0.043

NLFFF-S-20100807 -0.072 −0.72± 0.19 11.5 −95.7± 25.4 −570± 97 −164± 1 0.061

NLFFF-L-20100807 -0.072 −0.09± 0.31 3.3 −0.9± 3.3 −570± 97 −164± 1 0.061


