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Bayes' theorem
 Observing 10 stars, we use a method to detect stars 

with exoplanet. 
Star without exoplanet

Star with exoplanet

Exoplanet detected
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Bayes' theorem

P(Stars with exoplanet)  

P(E) =
6

10
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Bayes' theorem

P(Method detects star with 
exoplanet) 

P(D)= 5
10
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Bayes' theorem

P(Method detects star with 
exoplanet and star having 
exoplanet) 

P(D and E) =
4

10
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Bayes' theorem

Conditional probability: 
P(Stars having exoplanet 
providing that the method 
detected exoplanet stars) 

𝑃𝑃 𝐸𝐸 𝐷𝐷 =
𝑃𝑃(𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸)

𝑃𝑃(𝐷𝐷)

=
4
10
5
10

= 4
5

𝑖𝑖𝑖𝑖 𝑃𝑃 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸
≈ 𝑃𝑃 𝐷𝐷 ⇔ 𝑃𝑃 𝐸𝐸 𝐷𝐷 ≈ 1
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Bayes' theorem

Conditional probability: 
P(Detected exoplanet stars 
providing that stars have
exoplanet) 

𝑃𝑃 𝐷𝐷 𝐸𝐸 =
𝑃𝑃(𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸)

𝑃𝑃(𝐸𝐸)

=
4
10
6
10

= 4
6

=> method sensitivity
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Bayes' theorem

Conditional probability: P(Not
detected exoplanet star 
providing that star does not 
have exoplanet) 

𝑃𝑃 �𝐷𝐷 �𝐸𝐸 =
𝑃𝑃(�𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 �𝐸𝐸)

𝑃𝑃( �𝐸𝐸)

=
3
10
4
10

= 3
4

=> method specificity
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Bayes' theorem

𝑃𝑃 𝐷𝐷 𝐸𝐸 =
𝑃𝑃(𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸)

𝑃𝑃(𝐸𝐸)
⇔𝑃𝑃(𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸) = 𝑃𝑃 𝐷𝐷 𝐸𝐸 ∗ 𝑃𝑃(𝐸𝐸)

𝑃𝑃 𝐸𝐸 𝐷𝐷 =
𝑃𝑃(𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸)

𝑃𝑃(𝐷𝐷)
⇔𝑃𝑃(𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸) = 𝑃𝑃 𝐸𝐸 𝐷𝐷 ∗ 𝑃𝑃(𝐷𝐷)

⇔𝑃𝑃 𝐸𝐸 𝐷𝐷 ∗ 𝑃𝑃 𝐷𝐷 = 𝑃𝑃 𝐷𝐷 𝐸𝐸 ∗ 𝑃𝑃(𝐸𝐸)

𝑷𝑷 𝑬𝑬 𝑫𝑫 =
𝑷𝑷 𝑫𝑫 𝑬𝑬 ∗ 𝑷𝑷(𝑬𝑬)

𝑷𝑷(𝑫𝑫)
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Bayes' theorem : application
 Observing 10 stars, we use a method to detect stars 

with exoplanet. 
 This method has the following performance:

 Sensitivity: When a star has an exoplanet, the method 
designates this star as an exoplanet star with a 
probability of 90%, 𝑃𝑃 𝐷𝐷 𝐸𝐸

 When a star does not have an exoplanet, the method 
designate this star as an exoplanet star with a probability 
of 1%, 𝑃𝑃 𝐷𝐷 �𝐸𝐸

 What is the probability that a star has really an 
exoplanet if the method designates this star as having 
an exoplanet 𝑃𝑃 𝐸𝐸 𝐷𝐷 ?
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Bayes' theorem : application
𝑃𝑃 𝐷𝐷 𝐸𝐸 = 0,9 
𝑃𝑃 𝐷𝐷 �𝐸𝐸 = 0,01

𝑃𝑃 𝐸𝐸 𝐷𝐷 =
𝑃𝑃 𝐷𝐷 𝐸𝐸 ∗ 𝑃𝑃(𝐸𝐸)

𝑃𝑃(𝐷𝐷)
=

0,9 ∗ 𝑃𝑃(𝐸𝐸)
𝑃𝑃(𝐷𝐷)

𝑃𝑃 𝐷𝐷 = 𝑃𝑃 𝐷𝐷 𝐸𝐸 ∗ 𝑃𝑃(𝐸𝐸)+ 𝑃𝑃 𝐷𝐷 �𝐸𝐸 ∗ 𝑃𝑃( �𝐸𝐸)
𝑃𝑃 𝐷𝐷 = 𝑃𝑃 𝐷𝐷 𝐸𝐸 ∗ 𝑃𝑃(𝐸𝐸)+ 𝑃𝑃 𝐷𝐷 �𝐸𝐸 ∗ 1 − 𝑃𝑃 𝐸𝐸
𝑃𝑃 𝐷𝐷 = (𝑃𝑃 𝐷𝐷 𝐸𝐸 − 𝑃𝑃 𝐷𝐷 �𝐸𝐸 ) ∗ 𝑃𝑃(𝐸𝐸)+ 𝑃𝑃 𝐷𝐷 �𝐸𝐸

𝑃𝑃 𝐸𝐸 𝐷𝐷 =
𝑃𝑃 𝐷𝐷 𝐸𝐸 ∗ 𝑃𝑃(𝐸𝐸)

(𝑃𝑃 𝐷𝐷 𝐸𝐸 − 𝑃𝑃 𝐷𝐷 �𝐸𝐸 ) ∗ 𝑃𝑃(𝐸𝐸)+ 𝑃𝑃 𝐷𝐷 �𝐸𝐸

Emmanuel Grolleau - Observatoire de Paris - PSL*06/11/2023 13



Bayes' theorem : application
𝑃𝑃 𝐷𝐷 𝐸𝐸 = 0,9 
𝑃𝑃 𝐷𝐷 �𝐸𝐸 = 0,01

𝑃𝑃 𝐸𝐸 𝐷𝐷 =
𝑃𝑃 𝐷𝐷 𝐸𝐸 ∗ 𝑃𝑃(𝐸𝐸)

(𝑃𝑃 𝐷𝐷 𝐸𝐸 − 𝑃𝑃 𝐷𝐷 �𝐸𝐸 ) ∗ 𝑃𝑃(𝐸𝐸)+ 𝑃𝑃 𝐷𝐷 �𝐸𝐸

𝑃𝑃 𝐸𝐸 𝐷𝐷 =
0,9 ∗ 𝑃𝑃(𝐸𝐸)

0,89 ∗ 𝑃𝑃 𝐸𝐸 + 0,01
What is the probability that a star has really an exoplanet if 
the method designates this star as having an exoplanet ?

The answer totally depends on the probability of 
exoplanets in the universe !!!

and we don’t know this probability…
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Bayes' theorem : application

𝑃𝑃 𝐸𝐸 𝐷𝐷 =
0,9 ∗ 𝑃𝑃(𝐸𝐸)

0,89 ∗ 𝑃𝑃 𝐸𝐸 + 0,01
What is the probability that a star has really an exoplanet if 
the method designates this star as having an exoplanet ?

The answer totally depends on the probability of 
exoplanets in the universe !!!

and we don’t know this probability…
If 𝑃𝑃 𝐸𝐸 = 1𝑒𝑒−5 (one star over 100 000 has exoplanet) then

𝑃𝑃 𝐸𝐸 𝐷𝐷 = 0,9∗𝑃𝑃(𝐸𝐸)
0,89∗𝑃𝑃 𝐸𝐸 +0,01

= 0,000899⇔ 𝟎𝟎,𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 %
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Bayes' theorem : application
 Let’s  say that we look at 1 000 000 stars. If  𝑃𝑃 𝐸𝐸 =
1𝑒𝑒−5, one star over 100 000 has exoplanet, then:
 10 stars have exoplanet
 9 stars with exoplanet will be detected by our method
 Over 999 990 star with no exoplanet, 1 % , 

approximatively 10 000 will be false positives.
 So we will have 10 009 star detected with exoplanet but 

only 9 true positives !

Emmanuel Grolleau - Observatoire de Paris - PSL*06/11/2023 16



Summary
 Bayes' theorem
 Linear regression problem 
 Statistical inference
 Frequentist approach
 Bayesian approach
 Bayesian Neural Networks

Emmanuel Grolleau - Observatoire de Paris - PSL*06/11/2023 17



Linear regression problem
Hubble-Lemaître's law

 H: Hubble constant
 d: distance of the galaxy from the Earth
 v: velocity of the galaxy

We want to estimate H0, we have observed a lot of pair 
(d, v) 
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H0 ∗ d = 𝑣𝑣



Linear regression problem
Hubble-Lemaître's law
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H0 ∗ d = 𝑣𝑣
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Statistical inference
 Inferential statistical analysis infers properties of a 

population, for example by testing hypotheses and 
deriving estimates. It is assumed that the observed data 
set is sampled from a larger population.

 Two schools from 18th century:
 Frequentist inference (classical): repeated sampling
 Bayesian inference: Bayesian inference uses the 

available posterior beliefs as the basis for making 
statistical propositions
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Statistical inference
Let's toss a coin 10 times. 

Frequentist approach: If, for example, we get tails 6 
times out of 10, then the probability of getting tails from 
the results of this experiment is equal to 6/10 = 0.6. 
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Linear regression problem
Frequentist approach
 Hubble-Lemaître's law
We want to estimate H0

Frequentist approach:
Linear regression model: we use the pairs (di, vi) to find the 
estimate of the value H0

We call the unobserved deviations from the above equation 
the errors 𝜀𝜀𝑖𝑖
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H0∗ d = 𝑣𝑣

H0∗ d𝑖𝑖 + 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖



Linear regression problem
Frequentist approach
 �𝜀𝜀𝑖𝑖: estimated errors, i.e. differences between actual 

and predicted values of the dependent variable 𝑣𝑣𝑖𝑖

 We use a least square approach to minimize the 
sum of estimated squared residuals
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�𝜀𝜀𝑖𝑖= 𝑣𝑣𝑖𝑖− H0 ∗ d𝑖𝑖

MIN ∑𝑖𝑖=1𝑛𝑛 �𝜀𝜀𝑖𝑖
2

= 𝑀𝑀𝑀𝑀𝑀𝑀 �
𝑖𝑖=1

𝑛𝑛

𝑣𝑣𝑖𝑖− 𝐻𝐻0 ∗ d𝑖𝑖 2



Linear regression problem
Frequentist approach
Frequentist approach:

So, what is the problem with frequentist approach with a 
linear regression model ?
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�𝐻𝐻0 =
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑖𝑖 − 𝑑̅𝑑 𝑣𝑣𝑖𝑖 − 𝑣̅𝑣

∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑖𝑖 − 𝑑̅𝑑 2



Linear regression problem
Frequentist approach
Frequentist approach:
So, what is the problem with pure frequentist approach 
with a linear regression model ?

 How to proceed if we have only few samples (couple 
velocity/distance) ? 

 How to proceed if we need to have an estimation of 
our parameter as soon as possible without waiting for a 
lot of sample ? (e.g. SPAM detection).
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Statistical inference
Let's toss a coin 10 times. 
Frequentist approach: If, for example, we get tails 6 times 
out of 10, then the probability of getting tails from the results 
of this experiment is equal to 6/10 = 0.6. 
Bayesian approach, we're not interested in this probability, 
but rather in its a priori distribution. Indeed, if the coin is 
balanced, then a priori the probability of getting heads is the 
same as that of getting tails, i.e. 1/2 = 0.5. This a priori 
probability is obtained from the results of other experiments 
carried out in the past.
It's obvious that the probability calculated by the frequentist 
method will converge towards 0.5 if the coin is tossed a 
significant number of times.
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Linear regression problem
Bayesian approach

𝑷𝑷 𝑬𝑬 𝑫𝑫 =
𝑷𝑷 𝑫𝑫 𝑬𝑬 ∗ 𝑷𝑷(𝑬𝑬)

𝑷𝑷(𝑫𝑫)

For our problem, the goal of the bayesian statistics is to 
find the best value of H0 (in terms of probability) to 
explain the relationship between the pairs of distance 
and velocity observed.

𝑷𝑷 𝜽𝜽 𝒀𝒀 =
𝑷𝑷 𝒀𝒀 𝜽𝜽 ∗ 𝑷𝑷(𝜽𝜽)

𝑷𝑷(𝒀𝒀)
e.g. θ = 𝑯𝑯𝟎𝟎
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Linear regression problem
Bayesian approach

𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 =
𝑷𝑷 𝒀𝒀 𝑯𝑯𝟎𝟎 ∗ 𝑷𝑷(𝑯𝑯𝟎𝟎)

𝑷𝑷(𝒀𝒀)
𝑷𝑷(𝒀𝒀) is useless, it doesn’t provide any information 
but simply normalizes the result P H0 Y , therefore 
we can reformulate as:

𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 ∝ 𝑷𝑷 𝒀𝒀 𝑯𝑯𝟎𝟎 ∗ 𝑷𝑷(𝑯𝑯𝟎𝟎)
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Bayesian approach
Vocabulary

𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 ∝ 𝑷𝑷 𝒀𝒀 𝑯𝑯𝟎𝟎 ∗ 𝑷𝑷(𝑯𝑯𝟎𝟎)

 P H0 Y : posterior probability density

 P Y H0 : likelihood

 P(H0): prior probability density
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Bayesian approach
Maximum likelihood

𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 ∝ 𝑷𝑷 𝒀𝒀 𝑯𝑯𝟎𝟎 ∗ 𝑷𝑷(𝑯𝑯𝟎𝟎)
𝐏𝐏 𝒀𝒀 𝑯𝑯𝟎𝟎 : Maximum likelihood

 This is the frequentist part of the equation

 Proving that we have:
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H0∗ d = 𝑣𝑣

𝑣𝑣0, d0
𝑣𝑣1, d1

…
𝑣𝑣𝑖𝑖 , d𝑖𝑖

• Ordinary least squares (most popular)

• Method of moments 

• Maximum Likelihood

�𝐻𝐻0 = 𝑚𝑚𝑚 = 𝐸𝐸(𝑣𝑣
𝑑𝑑
) 



Bayesian approach
Maximum likelihood
 Let’s say that we have an estimated value of  �H0, what is the 

probability to get the pairs vi, di:
 For the first pair P v1|�H0, d1 = 0,02 (2%), with this �H0 value, 

it is higly unlikely to get the pair  v1, d1
 For the second pair P v2|�H0, d2 = 0,95 (95%), with this �H0

value, it is higly probable to get the pair  v2, d2
 And so on…
 For the last pair P v𝑛𝑛|�H0, d𝑛𝑛 = 0,5 (50%), with this �H0 value, 

it is possible to get the pair  v𝑛𝑛, d𝑛𝑛
 The join probability for this value of  �H0 is:

 P v|�H0,𝑑𝑑 = ∏P v𝑖𝑖|�H0, d𝑖𝑖 = 0,02 ∗ 0,95 ∗ ⋯∗ 0,5 = 0,0095
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Bayesian approach
Maximum likelihood
 Our goal is to maximise this probability, that is the 

maximum likelihood, MAX(P v|�H0,𝑑𝑑 = ∏P v𝑖𝑖|�H0, d𝑖𝑖 ) 

If  𝜀𝜀𝑖𝑖 follows a Normal law, then the equation is:

P 𝑣𝑣𝑖𝑖|�𝐻𝐻0,𝑑𝑑𝑖𝑖 =
1

2𝜋𝜋𝜋𝜋2
𝑒𝑒𝑒𝑒𝑒𝑒 −

𝑣𝑣𝑖𝑖 − �𝐻𝐻0𝑑𝑑𝑖𝑖
2

2𝜎𝜎2
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H0∗ d𝑖𝑖 + 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖



Bayesian approach
Prior probability density

𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 ∝ 𝑷𝑷 𝒀𝒀 𝑯𝑯𝟎𝟎 ∗ 𝑷𝑷(𝑯𝑯𝟎𝟎)
𝑷𝑷(𝑯𝑯𝟎𝟎): Prior probability density

We no longer look at our data. We rely on our 
experience of the problem, our expertise in the 
subject.
We have an idea of the value of our parameter�𝐻𝐻0
and also the uncertainty about this value: 𝜎𝜎2

That is the prior probability, whatever the data, we 
propose as expert of this field : P(𝐻𝐻0, 𝜎𝜎𝐻𝐻𝐻2)
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Bayesian approach
Prior probability density

We should resolve 𝑃𝑃 𝑌𝑌 𝐻𝐻0 ∗ 𝑃𝑃(𝐻𝐻0) and it will 
be easier if we choose some special density 
probability for our prior beliefs, providing 
that our maximum likelihood probability 
density follows a Normal law.
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Bayesian approach
Posterior probability density

𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 ∝ 𝑃𝑃 𝑌𝑌 𝐻𝐻0 ∗ 𝑃𝑃(𝐻𝐻0)
𝑷𝑷(𝑯𝑯𝟎𝟎): Posterior probability density

The posterior probability density is a combination of our a 
priori beliefs and our likelihoods derived from the data.
Estimate the posterior probability density is the goal of the 
Bayesian approach.
The result of our Bayesian approach is then a probability law 
(a density of probability) not only a simple mean like in 
frequentist approach. We will be able to determine easily 
confidence interval for our estimator.
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Bayesian approach
Posterior probability density
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Bayesian approach
Posterior probability density

𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 ∝ 𝑃𝑃 𝑌𝑌 𝐻𝐻0 ∗ 𝑃𝑃(𝐻𝐻0)
𝑷𝑷(𝑯𝑯𝟎𝟎): Posterior probability density

Thus we can estimate the Esperance of our posterior 
density probability 

𝑬𝑬 𝑯𝑯𝟎𝟎 𝒀𝒀 = �𝑯𝑯𝟎𝟎 ∗ 𝑷𝑷 𝑯𝑯𝟎𝟎 𝒀𝒀 𝒅𝒅𝑯𝑯𝟎𝟎

If we choose the a priori probability function wisely, then 
we can calculate this expectation analytically, otherwise 
calculating this integral will be difficult.
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Bayesian approach
Conjugate distributions

𝑃𝑃 𝐻𝐻0 𝑌𝑌 ∝ 𝑃𝑃 𝑌𝑌 𝐻𝐻0 ∗ 𝑃𝑃(𝐻𝐻0)

For certain likelihood functions, selecting a 
specific prior results in the posterior sharing the 
same distribution as the prior. This type of prior is 
then called a conjugate prior.
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Bayesian approach
Conjugate distributions
 [Beta posterior]
 Beta prior * Bernoulli likelihood → Beta posterior
 Beta prior * Binomial likelihood → Beta posterior
 Beta prior * Negative Binomial likelihood → Beta posterior
 Beta prior * Geometric likelihood → Beta posterior

 [Gamma posterior]
 Gamma prior * Poisson likelihood → Gamma posterior
 Gamma prior * Exponential likelihood → Gamma posterior

 [Normal posterior]
 Normal prior * Normal likelihood (mean) → Normal posterior
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Bayesian approach
Conjugate distributions
 Hubble-Lemaître's law
Observations: H0(70 km/s/Mpc),d(Mpc),𝑣𝑣(km/s)
We want to estimate H0 on our posterior (i.e. 𝐻𝐻0)

𝑃𝑃 𝐻𝐻0 𝑌𝑌 ∝ 𝑃𝑃 𝑌𝑌 �𝐻𝐻0 ∗ 𝑃𝑃(𝐻𝐻0)
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H0∗ d = 𝑣𝑣

Ho Mean Ho Variance Density function

Maximum likelihood �𝐻𝐻0 70 km/s/Mpc 8 �𝐻𝐻0 ~ 𝑁𝑁(70, 2.8)
Prior probability 𝐻𝐻0 70,5 0,5 𝐻𝐻0 ~ 𝑁𝑁(70.5, 0,7)



Bayesian approach
Conjugate distributions

06/11/2023 Emmanuel Grolleau - Observatoire de Paris - PSL* 44

Ho Mean Ho Variance Density function

Maximum likelihood �𝐻𝐻0 70 km/s/Mpc 8 �𝐻𝐻0 ~ 𝑁𝑁(70, 2.8)
Prior probability 𝐻𝐻0 70,5 0,5 𝐻𝐻0 ~ 𝑁𝑁(70.5, 0,7)

Conjugate Bayesian analysis of the Gaussian distribution. Kevin P. Murphy

If p𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∝ 𝑁𝑁 𝜇𝜇 ,𝜎𝜎2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∝ 𝑁𝑁 �𝜇𝜇, �𝜎𝜎2 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∝ 𝑁𝑁 𝜇̅𝜇, �𝜎𝜎2

𝜇̅𝜇 =
𝑛𝑛𝜎𝜎2

𝑛𝑛𝜎𝜎2 + �𝜎𝜎2
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 +
�𝜎𝜎2

𝑛𝑛𝜎𝜎2 + �𝜎𝜎2
𝜇𝜇

�𝜎𝜎2 =
1
𝜎𝜎2 +

𝑛𝑛
�𝜎𝜎2

−1

n: number of measurements



Bayesian approach
Conjugate distributions
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Ho Mean Ho Variance Density function

Maximum likelihood �𝐻𝐻0 70 km/s/Mpc 8 �𝐻𝐻0 ~ 𝑁𝑁(70, 2.8)
Prior probability 𝐻𝐻0 70,5 0,5 𝐻𝐻0 ~ 𝑁𝑁(70.5, 0,7)

If p𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∝ 𝑁𝑁 𝐻𝐻0 ,𝜎𝜎𝐻𝐻0
2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∝ 𝑁𝑁 �𝐻𝐻0, �𝜎𝜎𝐻𝐻0

2 𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∝ 𝑁𝑁 𝐻𝐻0,𝜎𝜎𝐻𝐻0
2

𝐻𝐻0 =
𝑛𝑛𝜎𝜎𝐻𝐻0

2

𝑛𝑛𝜎𝜎𝐻𝐻02 + �𝜎𝜎𝐻𝐻0
2

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝑣𝑣𝑖𝑖
𝑑𝑑𝑖𝑖

+
�𝜎𝜎𝐻𝐻0

2

𝑛𝑛𝜎𝜎𝐻𝐻02 + �𝜎𝜎𝐻𝐻0
2 𝐻𝐻0

𝜎𝜎𝐻𝐻0
2 =

1
𝜎𝜎𝐻𝐻02

+
𝑛𝑛
�𝜎𝜎𝐻𝐻0

2

−1



Bayesian approach
Conjugate distributions

06/11/2023 Emmanuel Grolleau - Observatoire de Paris - PSL* 46

𝑃𝑃 𝐻𝐻0 𝑌𝑌 ∝ 𝑁𝑁 𝐻𝐻0,𝜎𝜎𝐻𝐻0
2

If n is very small, just a few observations, we
use mainly the prior

𝐻𝐻0~0 ∗
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝑣𝑣𝑖𝑖
𝑑𝑑𝑖𝑖

+ 𝐻𝐻0

𝜎𝜎𝐻𝐻𝐻𝐻2~ 𝜎𝜎𝐻𝐻0
2



Bayesian approach
Conjugate distributions
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𝑃𝑃 𝐻𝐻0 𝑌𝑌 ∝ 𝑁𝑁 𝐻𝐻0,𝜎𝜎𝐻𝐻0
2

If n is very big, a lot of observations, we trust 
the observations 

𝐻𝐻0~
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝑣𝑣𝑖𝑖
𝑑𝑑𝑖𝑖

+ 0 ∗ 𝐻𝐻0

𝜎𝜎𝐻𝐻𝐻𝐻2~
�𝜎𝜎𝐻𝐻0

2

𝑛𝑛



Bayesian approach
Conjugate distributions
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𝑃𝑃 𝐻𝐻0 𝑌𝑌 ∝ 𝑁𝑁 𝐻𝐻0,𝜎𝜎𝐻𝐻0
2

If �𝜎𝜎𝐻𝐻0
2 >>𝜎𝜎𝐻𝐻0

2, we do not trust the 
observations, we use mainly the prior

𝐻𝐻0~
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝜎𝜎𝐻𝐻02 + �𝜎𝜎𝐻𝐻0
2

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝑣𝑣𝑖𝑖
𝑑𝑑𝑖𝑖

+
𝑏𝑏𝑏𝑏𝑏𝑏

𝑛𝑛𝜎𝜎𝐻𝐻02 + �𝜎𝜎𝐻𝐻0
2 𝐻𝐻0

𝜎𝜎𝐻𝐻0
2~ 𝜎𝜎𝐻𝐻0

2



Bayesian approach
Conjugate distributions
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𝑃𝑃 𝐻𝐻0 𝑌𝑌 ∝ 𝑁𝑁 𝐻𝐻0,𝜎𝜎𝐻𝐻0
2

If 𝜎𝜎𝐻𝐻0
2 ≫ �𝜎𝜎𝐻𝐻0

2, we trust the observations, 

𝐻𝐻0 =
𝑏𝑏𝑏𝑏𝑏𝑏

𝑛𝑛𝜎𝜎𝐻𝐻02 + �𝜎𝜎𝐻𝐻0
2

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝑣𝑣𝑖𝑖
𝑑𝑑𝑖𝑖

+
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝜎𝜎𝐻𝐻02 + 𝜎𝜎𝐻𝐻02
𝐻𝐻0

𝜎𝜎𝐻𝐻0
2~

�𝜎𝜎𝐻𝐻0
2

𝑛𝑛



Bayesian approach

 If we do not choose a conjugate distribution between 
the prior and the likelihood, then the computation 
may be very difficult and we should have to do Monte-
Carlo simulation.
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Posterior computation with R
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R language, bayesian model, library(Bolstad)
https://www.rdocumentation.org/packages/Bolstad/versions/0.2-41/topics/bayes.lin.reg 



Posterior computation with R
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Posterior computation with R
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Posterior mean and variance
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Posterior mean and variance of H0 as function of number of observations



Bayesian approach
 During the 19th and 20th centuries, frequentist methods 

largely supplanted Bayesian methods.
 Since the early 1980s, there has been a major resurgence in 

research and applications of Bayesian methods. 
 One might ask why it took so long for Bayesian statistics to 

return to the forefront ?
 The reason is simple: Bayesian statistics is often 

computationally complex or unfeasible when applied to 
simple examples, so we had to wait until numerical 
resolution methods were sufficiently powerful to enable us 
to obtain numerical approximations in reasonable times.
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Pro/cons
https://documentation.sas.com

Pro
 It provides a natural and principled way of combining prior 

information with data, within a solid decision theoretical 
framework. You can incorporate past information about a 
parameter and form a prior distribution for future analysis. 
When new observations become available, the previous posterior 
distribution can be used as a prior. All inferences logically follow 
from Bayes’ theorem.

 It provides interpretable answers, such as “the true parameter 
has a probability of 0.95 of falling in a 95% credible interval.”
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https://documentation.sas.com/


Pro/cons
Cons
 It does not tell you how to select a prior. There is no correct way to choose a 

prior. Bayesian inferences require skills to translate subjective prior beliefs into 
a mathematically formulated prior. If you do not proceed with caution, you can 
generate misleading results. 

 It can produce posterior distributions that are heavily influenced by the priors. 
From a practical point of view, it might sometimes be difficult to convince 
subject matter experts who do not agree with the validity of the chosen prior. 

 It often comes with a high computational cost, especially in models with a large 
number of parameters. In addition, simulations provide slightly different 
answers unless the same random seed is used. Note that slight variations in 
simulation results do not contradict the early claim that Bayesian inferences are 
exact. The posterior distribution of a parameter is exact, given the likelihood 
function and the priors, while simulation-based estimates of posterior 
quantities can vary due to the random number generator used in the 
procedures. 
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Summary
 Bayes' theorem
 Linear regression problem 
 Statistical inference
 Frequentist approach
 Bayesian approach
 Bayesian Neural Networks
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Bayesian Neural Networks
Based on https://www.datagenius.fr/post/bayesian-
deep-learning-soyez-sur-de-vos-incertitudes

Neural networks are: 
 opaque algorithms, giving little insight into their inner 

workings; 
 predictions are given without any information on the 

uncertainties of their results.
 Bayesian deep learning provides an answer to this 

second difficulty, by providing more complete 
information at network output.
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https://www.datagenius.fr/post/bayesian-deep-learning-soyez-sur-de-vos-incertitudes


Bayesian Neural Networks
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MNIST handwritten digit database

Consider that we have trained a classical neural network on 
the first 5 classes (0-4) of the MNIST database. 



Bayesian Neural Networks
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What does the result obtained by the 
classical neural network mean?

https://www.datagenius.fr/



Bayesian Neural Networks
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The image presented is a 2 with 85% certainty
https://www.datagenius.fr/



Bayesian Neural Networks
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The image has an 85% chance of being a 2 
rather than a 0, 1, 3 or 4

The image presented is a 2 with 85% certainty
https://www.datagenius.fr/



Bayesian Neural Networks

 Classical network gives a measure of the likelihood of 
the result that depends on the classes on which the 
network has been trained

 We want a measure of the degree of confidence of the 
network that is independent of the training classes.
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Bayesian Neural Networks
 Uncertainty 

 Random uncertainties:
 uncertainties associated with data quality. 
 e.g. uncertainties due to the level of blur or lack of sharpness 

of the image. 

 Epistemic uncertainties 
 uncertainties due to model quality. 
 It is these uncertainties that provide the most information on 

the validity of the model's prediction
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Bayesian Neural Networks
 Bayesian deep learning introduce the notion of 

probability during the training and prediction phases 
of the network. 

 The instances manipulated are probability 
distributions rather than scalars. 

 The network weights and the neurons' contained 
values follow normal distributions characterized by a 
mean value and a standard deviation

 Finally, each neuron in the network's output layer 
returns a normal distribution whose mean value and 
standard deviation have a value determined by the 
network's input image.
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Bayesian Neural Networks
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Bayesian Neural Networks
CONS
 Compared to classical neural network twice as many 

values have to be stored and modified (the mean value 
and the standard deviation). 
 Need more storage space

 the algorithm for updating the weights, which is a 
modification of the gradient backpropagation 
algorithm, requires a complex calculation.
 Need more CPU
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Summary
 Bayes' theorem
 Linear regression problem 
 Statistical inference
 Frequentist approach
 Bayesian approach
 Bayesian Neural Networks
 Entertainment
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The Two Children Problem

 Mr. Smith has two children. 
 At least one of them is a boy. 

 What is the probability that both children are boys?
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The Two Children Problem
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Pitfalls of relying solely on a fitted 
model (Anscombe's quartet )
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