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Chapter 1: Ionization and recombination

From planetary environments to the intergalactic medium, most of the visible matter
in the universe is ionized. The main reason for this is the existence of stars, which are
sources of ionizing radiations.

The plasma state results from the balance between two competing processes : ioni-
zation, which is the production of a positive ion and a free electron from a neutral atom,
and recombination, which is the inverse process. The two major ways to ionize an atom
are by electron impact, or by photo-ionization. In this chapter, we briefly describe how
to quantify these effects.

1.1 Thermal equilibrium
In thermal equilibrium, the ionization degree of a gas resulting from the balance

between all ionizing processes (collisions, radiation...) is given by Saha’s equation.

nenXn+1

nXn
= 2gXn+1

gXn

(2πmekT

h2

)3/2
e−W/kT (1.1)

ne is the free electron density, Xn and Xn+1 are two consecutive ionization ground states
of the atomic specie X. W is the potential of ionization, i.e. the difference of energy bet-
ween the ground states Xn and Xn+1.

The result of this equation in the case of a gas of hydrogen, for different densities
of nuclei ntot = nH+ + nH is illustrated on Fig.1.1. We see that the ionization degree is
high even for temperature quite smaller than the ionization energy. This is because, at
low densities, recombination is a rather inefficient process.

The mass density of the photosphere of the Sun (which is an opaque medium in
which Saha’s law is applicable) is around 3×10−4 kg.m−3, which corresponds to a num-
ber density of protons of n = 2 × 1023 m−3. The observed temperature is T = 6400 K.
Saha’s equation gives a value of α ' 4× 10−4 : the photosphere is rather neutral.

In the above layers, Saha’s equation is not valid because the plasma is optically thin,
and not in a thermal equilibrium state. This happens to be the case in most dilute
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Figure 1.1 – Ionisation degree α = ne/(ne +nH+) as a function of the temperature for different
densities.

plasmas, which makes Saha’s equation of little concrete use in plasma physics.

1.2 Out of equilibrium description
The out of equilibrium description of a plasma passes by the description of each

possible ionization and recombination reaction, by the measure of its efficiency, and by
the calculation of the ionization profiles in a particular geometrical configuration. We
show these steps in the following.

1.2.1 Reaction cross-section

The efficiency of a reaction is characterized by its cross-section. For instance, consider

A+B → C +D. (1.2)

Consider a volume containing "target" particles B at rest. A flux density ΦA = nAvA/B
of particles A is passing through the volume (nA and vA are the number density and
velocity of the particles A). The number of reaction per unit volume and unit time is

ṅreac = dnC/dt = −dnA/dt = nAvA/BnBσ (1.3)

which defines the cross section σ, homogeneous to a surface. Of course the equation is
unchanged by exchanging indices A and B (vA/B = vB/A is here a positive value).
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We can also define the mean-free path λ of the specie A "colliding" with the back-
ground made of specie B from the small probability dp that A interacts with B while
travelling a small distance ds : λ−1 = dp/ds. Then we have

nA(s+ ds) = nA(s)(1− dp)⇒ dnA/ds = −nA/λ (1.4)

from the definition of λ. So, if a beam of particles A is launched in a medium charac-
terized by a constant mean-free path, its density with decrease exponentially along its
way, with a characteristic decay length equal to λ.

Now making the connection with the cross section : we simply have the distance
travelled ds = vA/Bdt, so the number of reaction per unit time and volume is, from the
previous equation

dnA/dt = −nAvA/B/λ⇒ λ = (nBσ)−1 (1.5)

1.2.2 Ionization processes

The two main ionization reactions are the ionization by electron impact and the
photo-ionization. The first correspond to the equation

A+ e− → A+ + e− + e− (1.6)

and is characterized by a cross section σe given, in the classical approximation, by the
Thomson formula 1

σe(E) = πq4
e(E −W )
WE2 (1.7)

where E is the ionizing electron’s energy in the rest frame of the impacted atom, and
qe ≡ e/

√
4πε0. The maximum of this function is reached at twice the ionisation potential

W , and is σe ∼ 10−20 m2 for W ∼ 10 eV.

The photoionisation reaction involves the interaction with a photon,

A+ hν → A+ + e−. (1.8)

It is characterized by a cross section σph that is a function of the energy hν of the
photon and of the chemical properties of A. There is no simple, classical expression
for this cross section, but a good order of magnitude, in practical cases, is given by
σph ' 5 × 10−22(E/W )−3 m2, for photo-electrons having energies larger than the ioni-
sation potential.

The ionising source in most astrophysical cases will be a star. In this case the flux
density of ionising photons at a distance r from the star will be related to the star
spectral luminosity Lν by

Nph = 1
4πr2

∫ ∞
ν0

Lν
hν
dν (1.9)

1. A demonstration of this formula will be given in the chapter on collisions.
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where ν0 = W/h is the minimal ionisation frequency, and, approximating the star radia-
tion by a perfect blackbody,

Lν(R, T ) = 4πR2 2πhν3

c2
1

ehν/kT − 1
(1.10)

where R and T are the star radius and temperature, respectively. Typical numbers, for
the Sun, 4πr2Nph ∼ 1.8×1033 photons.s−1. For a B type main sequence star (T = 30000
K), 4πr2Nph ∼ 1.5× 1048 photons.s−1.

1.2.3 Recombination processes

Recombination is the inverse process of ionisation. The ionisation reactions seen
above can be read in the opposite direction, giving the three-body recombination

A+ + e− + e− → A+ e− (1.11)

which is in most dilute plasma cases a rather inefficient process.

The inverse of the photoionisation is the radiative recombination,

A+ + e− → A+ hν (1.12)

which is an important process in astrophysics. It is usually, in the absence of molecular
species, the dominent process, and is characterized by a cross section σrad ∼ 10−24m2.
Note that it is much smaller than the ionisation cross section.

In the presence of diatomic molecules, there exist a much more efficient recombination
process, which is the dissociative recombination

AB+ + e− → A∗ +B∗ (1.13)

Its cross section is σdis ∼ 10−18 m−2 : this process happens to be dominent in most
regions of the Earth’s ionosphere, which is mainly constituted of N2 or O2 molecules.

1.3 A few example, or exercices

1.3.1 Chapman’s ionization layer

An example of a space plasma (mainly) produced by photo-ionization is the Earth’s
ionosphere. Here we develop a model for the structure of the ionospheric plasma layer.

We assume that the atmosphere is composed by a single chemical specie of molecular
mass m, in hydrostatic equilibrium at temperature T with a base density n0, so that the
molecular number density is

n(z) = n0e
−z/H , H = kT

mg
(1.14)
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g is the acceleration of gravity, assumed constant. We assume this exponential atmos-
phere is impacted by solar ionizing radiation coming along the direction of the z axis,
and characterized by a photon flux density Nph(z) in m−2s−1.

The probability that a photon gets absorbed when it travels a distance dz is dp =
dz/λph = n(z)σphdz. Therefore the flux of photons evolves with z according to

Nph(z − dz) = Nph(z)(1− dp)⇒ dNph

dz
= n(z)σphNph (1.15)

from which we obtain

Nph(z) = Nph(∞) exp
(
−σph

∫ ∞
z

n(z)dz
)

(1.16)

where we have assumed n(z) is a given function (i.e. the ionization process does produce
an ion/electron density that is small compared to the neutral density). The argument
of the exponential is called the optical depth of the atmosphere at altitude z. Nph(∞)
is the ionizing photon flux from the Sun at the Earth’s orbit.

We can calculate Nph(z) using eq.(1.14) :

Nph(z) = Nph(∞) exp (−σphn(z)H) (1.17)

which gives the profile of the Sun’s UV light in the atmosphere. According to eq.(1.8), an
electron is created each time a photon is absorbed. So, the number electron created per
unit volume checks Qedz = Nph(z + dz)−Nph(z), and Qe = dNph/dz. We can evaluate
this quantity using the previous results,

Qe = −n(z)σphNph(z) = Nph(∞)σphn0 exp (−σphn(z)H − z/H) (1.18)

that is often put into the form

Qe = Qmax exp (1− y − exp−y) (1.19)

and is called the Chapman’s electron production function, from the British plasma phy-
sicist Sydney Chapman.

The number density of electrons in the ionosphere is now obtained by assuming
steady-state equilibrium between electron production and recombination. The dissocia-
tive recombination is dominent, and occurs with a volumic rate R, according to eq(1.13),

R = kdisn
2
e, kdis = σdisve (1.20)

ve being the thermal speed of the free electrons. The steady-state R = Qe gives the
electron number density in the ionosphere

ne(z) =
√
Qe(z)/kdis (1.21)
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Figure 1.2 – The Rosette Nebula, a paradigmatic example of a Strömgren sphere.

1.3.2 Strömgren sphere

For this exercise, only order of magnitude estimations and qualitative reasonings are
asked for.

Assume that we have a 30.103 K B-type main sequence star surrounded by an inter-
stellar medium composed entirely of hydrogen, with density nH = 1 cm−3. Consider a
spot at 5 pc from the star.

1. How long will a neutral hydrogen atom stay neutral ?
2. What is the fraction ξ = nH0/nH of neutral hydrogen (assuming the only recom-

bination process is radiative) ?
3. What is the radius R of the ionized region ? To answer this question, you will

introduce the radiative recombination coefficient α∗ for all recombinations into
excited levels of H. Indeed, radiative recombinations to the ground state produce
again an ionizing photon and must not be counted for the ionization equilibrium.
The recombination coefficient is α∗ ' 2.6 × 1019(T/104 K)−0.7 m3.s−1, and is
defined so that the number of recombination per unit volume is ṅrec = α∗nenH+ .

4. What is the typical extent of the boudary between the ionized region and the
neutral gas around ?

8
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1.3.3 A cometary ionosphere

A comet emits H2O molecules at a speed V , with a flux density F0, in a spherical
symmetry. It is illuminated by solar ionizing radiation, incoming with a photon flux Nph.
Calculate the ionization profile around the comet.

Indication : first calculate the radial profile nn(r) of neutral water molecules around
the comet. Then write the equation for the time evolution of the density of ionized water
H2O+. Assuming steady-state, deduce the radial profile of H2O+ around the comet. (You
will assume that the optical depth of the cometary environment is always close to 1, so
the UV flux can be assumed constant in the whole volume of the cometary atmosphere).

9



Chapter 2: Plasma scales, and collective pheno-
mena

The dynamics of neutral gas are controlled by short range interactions between consti-
tuants, i.e. collisions. Plasma are different because of the effect of the Lorentz force, which
is at the origin of long range, macroscopic correlations in the plasma. This effect is intrin-
sically non-linear, as it involves feedback effects between the field and the ionized matter.

To summarize the feedback loop : the charged particles phase-space distributions
are determined by the action of long-range electromagnetic forces, which are themselves
determined by the charged particles phase-space distributions through the Maxwell’s
equations. Plasma physics is largely related to the study of this class of coupled problems.

10
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2.1 Plasma scales
We have a gas of charged particles of mass m and charge e, coupled through the elec-

trostatic field characterized by the constant ε0. The gas has a density n and a thermal
energy kT .

A quick dimensional analysis 1 may help us identifying some typical scales of such an
"electrostatic plasma". We look for length or timescales in the form (ε0/e2)α(m)βnγ(kT )δ.
For lengths, we have the system

−α+ β + δ = 0
−3α− 3γ + 2δ = 1
2α− 2δ = 0

⇒


α = δ

β = 0
γ = −(α+ 1)/3

We have three equations for 4 unknowns, so the system is underdetermined (we can
build an infinity of length scales). Interesting examples are obtained for

— α = 0 gives ` = n−1/3, this is the interparticular distance of the gas.

— α = −1/2 gives λD = (ε0kT/ne
2)1/2 is the Debye length, which is the electrosta-

tic screening length in a plasma.

— α = −1 gives λL = e2/(ε0kT ), this is, to some multiplicative factor, the Lan-
dau length (or the "thermal" Landau length), which si the distance at which the
thermal energy between particles equals their potential interaction energy, and
determines the typical distance for large-angle collisions in a plasma.

Note that these three scales are not independent, since we obviously have λ2
DλL ∼ `3.

Using the same procedure, we can also find a timescale, and a typical velocity,

— cs = (kT/m)1/2 is the usual (isothermal) sound speed.

— τ−1
p = ωp = (ne2/mε0)1/2 is the plasma frequency, which is the typical oscillation
frequency of a charge density perturbation in the plasma.

If we consider that the plasma is magnetized, other characteristic times and scales
appear. The plasma is now characterized by the value of its "macroscopic" magnetic field
B 2, and we must add to the analysis the constant µ0 (or equivalently, the light velocity c).

1. [ε0/e
2] = M−1L−3T 2, [n] = L−3 and [kT ] = ML2T−2

2. We did not consider a macroscopic electric field since, as we shall see, such a field cannot really
exist in the plasma

11
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We can now build the time and length scales associated to individual particle’s dyna-
mics : ωc = qB/m and ρ = cs/ωc, which are the gyrofrequency, and the thermal Larmor
radius.

But supplementary "collective" scales appear, involving the plasma density. From the
expression of the energy density µ0B

2/2, we can obtain a velocity VA = (B2/nmµ0)1/2,
and a new associated length λi = VA/ωc. They are called the Alfvén speed, and the
inertial length (sometimes the London length, in the context of magnetic screening).

In the following, we will study in more details the physical meaning of these scales,
and see in what context they appear.

2.2 Electroneutrality : the steady-state limit
As a medium rich in free-electrons, a plasma is of course a good electric conductor.

And as a good conductor, it cannot properly hold non-zero charge density in its volume,
at least not for a long time (compared to τ = ε0/σ, where σ is the electrical conducti-
vity). This can be seen from a simple reasoning : in a macroscopic homogeneous steady
state (i.e. ∂t = 0 and ∂r = 0), the electric field must nearly vanish 3 : mdv/dt = 0 ∼ qE.
Then, nearly everywhere in the plasma, one has ρ = ε0div E ' 0.

A steady-state plasma is then expected to neither contain any macroscopic electric
field, or charge density. If we introduce a charged object in a plasma, the electrons and
ions will configure themselves so that they screen this charge. We see how in the next
paragraph.

2.2.1 Electrostatic screening

The Debye length is associated to the collective phenomena of electrostatic screening
in a plasma : a charged object will attract charged particles of the opposite sign, and
repulse charges of the same sign, creating a non-neutral sheath around the object. The
charge density in the sheath will screen the object’s charge and ensure quasi-neutrality
in the rest of the plasma volume.

Assume an infinite conducting plane, and the perpendicular axis z. The plane carries
a uniform surface charge σ. On z > 0 we have a plasma of ions of mass M and charge e
and electrons of mass m. Far away from the plane, we assume the plasma is unperturbed,
and overall neutral. We assume steady state, the density of the ions and electrons is given
by

ne(r) = n∞ exp(eϕ(z)/kT ), ni(r) = n∞ exp(−eϕ(z)/kT ) (2.1)

3. the nearly comes from the fact that the electric field may compensate for other fields of force, we
discuss this in the "ambipolar electric field section"

12
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Figure 2.1 – Sheath structure around a macroscopic object embedded in a plasma.

where ϕ(∞) = 0 has been assumed. The Poisson equation gives the potentiel ϕ(z) in
the plasma,

∆ϕ(r) = −2en∞
ε0

sinh
(
eϕ(r)
kT

)
. (2.2)

We now assume that the thermal energy of the particles is substantially larger than the
electric potential, so that sinh eϕ/kT ' eϕ/kT . Poisson equation now reads

d2

dz2ϕ+ 2n∞e2

ε0kT
ϕ = 0, (2.3)

The solution of which is

ϕ = ϕ0e
−z/λD , λ2

D = ε0kT

2n∞e2 (2.4)

We see that the potential of the charged plate is screened over a Debye length. The
electric field at z = 0 must be equal to σplate/ε0 (from the Gauss theorem). So we can
determine the value of ϕ0 as

E(0) = λ−1
D ϕ0 = σplate/ε0 ⇒ ϕ0 = σplateλD

ε0
(2.5)

We now look at the charge density in the Debye sheath :

ρ(z) = e(ni − ne) = −2e2n∞
kT

ϕ(z) = −ε0ϕ(z)
λ2
D

(2.6)

13
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So, the charge per unit surface of the sheath is

σsheath =
∫
ρ(z)dz = −ε0ϕ0

λD
= −σplate. (2.7)

The charge in the sheath is opposite to the one carried by the plate and the whole sys-
tem, once integrated, is neutral.

2.2.2 The plasma parameter, and scale ordering

Consider a screened point charge q placed in a plasma. The potential around the
charge is

ϕ(r) ∼ q

4πε0r
e−r/λD . (2.8)

The calculation of the Debye length has assumed that the plasma particles kinetic energy
was much larger than their electrostatic potential energy, eϕ/kT � 1. From eq.(2.8), we
see that this correspond to the condition 4

Γ = 1
nλ3

D

� 1 (2.9)

which is equivalent to saying that there needs to be a large number of plasma particles
in the Debye sphere for our assumption to be valid, and for screening to be possible.

Γ is called the plasma parameter. It is defined as the inverse of the number of par-
ticles in a Debye sphere ; it needs to be very small compared to one for a gas of charged
particles to exhibit screening, and collective behaviours associated to it, and hence to be
called a "plasma" properly speaking. Astrophysical plasma typically all show Γ� 1. For
instance in the solar wind (which is a very dilute plasma), at 1 AU, one has λD ' 10 m
and n ' 5 cm−3, from which Γ ' 2× 10−10.

The smallness of Γ makes it possible to order the plasma scales `, λL and λD introdu-
ced in the beginning of this chapter. We have `/λD = Γ1/3 � 1, and `/λL = (λD/`)2 =
Γ−2/3 � 1, so plasma scales have the following important ordering

λL � `� λD, (2.10)

with ratios controlled by the value of the plasma parameter Γ.

2.2.3 The ambipolar electric field

An interesting effect arises from quasi-neutrality, in the presence of density, or pres-
sure, gradients of the charged species. Consider isothermal electrons and ions at tem-
perature T , placed in an acceleration field g(r). In the absence of an electric field, the

4. we evaluate an electron potential energy at r ∼ λd from the point charge.

14



M1 SUTS - Space Plasmas A. Zaslavsky

densities of electrons and ions, which have very different masses, should be very different,
leading to the existence of space chrage ρ... So we have to assume that an electric field
exists.

We can calculate it by assuming that it forces local quasi-neutrality everywhere in
the plasma : ni(r) = ne(r) = n(r). In the static limit, the gradient is determined by the
force equilibrium

0 = −kT∇n+ nqαE(r) + nmαg(r) (2.11)

where α = e, i. By substracting the two equations, we obtain the electric field in the
plasma 5

E(r) ' −mig(r)
2e . (2.12)

The "effective mass" of an ion in this electric field is now m′i = mi/2, and the effective
mass of an electron is m′e = mi/2, as can be seen by replacing the value of the electric
field in eq.(2.11).

This type of electric field, arising from the neutrality of the plasma on large scales,
is called an ambipolar electric field. An classic example of such a field is the Pannekoek-
Rossland electric field, that exists in plasma atmospheres (in particular, stellar atmos-
pheres) and roughly doubles the scale-height of a plasma atmosphere with respect to a
neutral one.

2.3 Deviation from quasi-neutrality : the plasma time res-
ponse

We considered in the previous section plasmas in steady-state, that are effectively
quasi-neutral. This limit must be valid as long as we consider timescales long enough for
the plasma particles to maintain the space-charge sheath around charged objects, or for
frequency quite smaller than

ωp = ve/λD =

√
n0e2

meε0
. (2.13)

Here we see appearing the timescale that was derived in the beginning of this section,
and that we call the plasma frequency (or plasma "angular frequency" to be rigorous,
but angular is most of the time omitted). We will see that enforced deviations from
quasi-neutrality oscillate at this frequency.
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Figure 2.2 – Plasma oscillation : heuristic treatment.

2.3.1 The plasma oscillation

A heuristic approach

We consider a quasi-neutral plasma of electrons and ions, having each the density
n0 and charge ±e. We displace a layer of width L of electrons by a small displacement
∆x � L, creating two regions of non-zero charge density (cf. fig.2.2). The system is
assumed invariant by translation along the two directions perpendicular to the x axis,
so all quantities only depend on the x coordinate. We look for the time evolution of this
initial configuration, and assume that we can consider the ions to be motionless (we will
check at the end that it is the case).

The electric field in the plasma is given by the Maxwell-Gauss equation

dE

dx
= −e(n0 − ne(x))

ε0
⇒ E(x) ∼ en0∆x/ε0 (2.14)

in most of the region between 0 and L, since we assume that ∆x is a very small quantity
with respect to L. Outside of the region 0 < x < L, the electric field is zero : the plasma
is quasi-neutral with a nul electric field. Inside this region, the electrons move according
to

d2∆x
dt2

= −eE
m

= −e
2n0
mε0

∆x, (2.15)

5. we neglect the electron mass compared to the ion mass
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so that the electrons oscillate at the plasma frequency ωp = (n0e
2/mε0)1/2. The electric

field in the plasma is
E(0 < x < L, t) ' en0∆x0

ε0
cosωpt (2.16)

Under the action of this electric field, the amplitude of the ion motion is

∆xions ∼
e2n0
miε0ω2

p

∆x0 =
ω2
p,ions

ω2
p

∆x0 = me

mi
∆x0 (2.17)

which is smaller than the electron one by a factor at least ∼ 2000. This justifies the
motionless ions hypothesis.

The linearized fluid equations approach

We now consider the time evolution of a small electron density perturbation using
the system of fluid equations. The plasma is assumed homogeneous and quasi-neutral,
with density n0, and the ions are assumed to stay at rest, as in the previous part.

As in the previous paragraph, the initial density perturbation is only along the x
coordinate of a cartesian frame, so that the problem is invariant by translations along
the y and z axis.

The evolution of the electron fluid is given by the following equations (the fluid
moments are ne(x, t) : electron density, ue(x, t) : electron mean velocity, pe(x, t) : electron
pressure)

∂tne + ∂x(neue) = 0 (2.18)
and

neme (∂tue + ue∂xue) = −∂xpe − eneE. (2.19)
The electric field is coupled to the electron density through the Maxwell-Gauss equa-

tion,
∂xE = −e(ne − n0)

ε0
(2.20)

Eqs.(2.18)-(2.19)-2.20) form a typical example of a non-linear set of coupled equa-
tions between particles and field dynamics typical of plasma collective behaviours, as
discussed in the introduction of this chapter.

In order to proceed, we first note that we have 3 equations but 4 unknowns (ne, ue,
pe and E). So we miss an equation. This is a problem typical of the fluid treatments, for
which a "closure" expressing the higher order moment (here the pressure) as a function of
the smaller order ones is always required 6. Here we shall use the "cold plasma" closure,

6. the question of how to find such physically justified closure is an important research problem in
plasma physics, of particular importance when collisions are rare
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pe = 0.

In order to proceed, we shall assume that the perturbation is small, and linearize
these equations around some equilibrium state. For this we assume that ne(x, t) = n0 +
δne(x, t), with δne � n0 everywhere, ue(x, t) = 0 + δue(x, t) and E(x, t) = 0 + δE(x, t).

The linearized equation set is

∂tδne + n0∂xδue = 0 (2.21)

n0me∂tδue = −en0δE. (2.22)

∂xδE = −eδne
ε0

(2.23)

Deriving the first equation with respect to time and using the two others to express δE
and δue, we obtain

∂2

∂t2
δne + ω2

pδne = 0. (2.24)

We see that an initial localized charge density perturbation will be maintained in
time through oscillations at the plasma frequency. Of course we neglected here all ef-
fects related to viscosity and collisions, and these so-called plasma oscillations are in
fact damped over time, on a timescale of the order of the inverse of the electron collision
frequency in the plasma.

This frequency of the plasma is of fundamental importance, since the plasma will tend
to react to any kind of electrostatic perturbation by oscillating at ωp : radio antennas
plunged in space plasmas constantly measure such oscillations (of more or less large
amplitudes).

2.3.2 Propagation of an electromagnetic transverse wave in a plasma

In this part, we investigate the propagation of a transverse plane wave of frequency ω
in a plasma. We follow the procedure of the previous section and linearize the equations
for the electron motion, and assume the ions as motionless.

The electric field evolution is given by

∇×∇×E = ∇(∇ ·E)−∆E = −µ0
∂j
∂t
− 1
c2
∂2E
∂t2

, (2.25)

we look for plane wave solutions, E ∝ exp(ik · r− iωt)

∆E− 1
c2
∂2E
∂t2

= µ0
∂j
∂t
. (2.26)
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We used ∇ · E = 0, as can be demonstrated from Maxwell-Ampère equation, combined
with the fact that E and j are co-linear, as shown below.

The current density j is obtained from the electrons dynamics in the wave’s field.
One has (in linearized form)

j = n0eue (2.27)

and the electron macroscopic velocity perturbation evolution is coupled to E through
eq.(2.22),

∂ue
∂t

= − e

me
E, (2.28)

so that the wave equation is now

∆E− 1
c2

(
∂2

∂t2
+ ω2

p

)
E = 0 (2.29)

where we used µ0 = 1/c2ε0.

The dispersion relation for the electromagnetic wave in the plasma is then

ω2 = ω2
p + k2c2 (2.30)

showing that transverse waves with frequencies smaller than the plasma frequency will be
evanescent (imaginary k). It also shows that the phase speed vϕ = ω/k of electromagnetic
waves in a plasma is larger than the speed of light 7. This produces the interesting effect
that electromagnetic radiation, when penetrating a plasma interface, will be refracted
away from the normal to the surface, in opposition to intuitive behaviour for classical
optical systems. This can be see from the optical refractive index of a plasma :

n = kc

ω
=

√
1−

ω2
p

ω2 < 1. (2.31)

This optical property is used to transmit long distance communications, by reflection
on the ionosphere. The typical plasma frequency of this latter is around 10 MHz.

2.4 Examples and exercises

2.4.1 Exercise : capacitance of a conductive sphere in a plasma

We consider a sphere of radius a, within a plasma constituted by single charged ions
of density ni and electrons of density ne. The problem is of spherical symmetry with
respect to the center of the sphere, hence the densities are function of the distance r to

7. Of course one can check that the group velocity vg is always smaller than c. You can demonstrate
as an exercise that vϕvg = c2
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this center only.

We want to calculate the capacitance of the sphere. For this we assume a device that
maintains it at a potential V with respect to "infinity" – the potential far away being
the one of the unperturbed plasma, that we assume to be equal 0.

First, calculate the potential ϕ(r) around the sphere. (Trick : you may introduce
ψ(r) = rϕ(r) to simplify the Poisson equation in spherical coordinates, and solve for ψ).

Then calculate the charge carried by the sphere, assuming overall neutrality of the
sphere + plasma system. Deduce the capacity of the conductive sphere. In what is it
different from the capacity of a sphere in vacuum?

2.4.2 Example : a plasma atmosphere, and the Pannekoek-Rossland
electric field

An application of the previous calculation is the one of a plasma atmosphere. We
assume a constant gravitational field g = −guz. In the absence of an electric field, one
would have the following density profiles

nα(z) = nα,0e
−z/Hα , Hα = kT

mαg
(2.32)

where α = e, i. We can see that He � Hi : the electron atmosphere extends to much
higher altitudes than the ion atmosphere does, because of the small electron mass. The-
refore the high altitude region is negatively charged and the low altitude one positively
charged, leading to the existence of an electric field, and to a contradiction (since the
density profiles were obtained not taking into account any electric field). The correct
hydrostatic equations are

−kT dnα(z)
dz

+ nαqαE(z)− nαmαg = 0 (2.33)

Making the assumption that ne ' ni ' n(z) everywhere, and summing the equations
(2.33) for ions and electrons, we obtain

−2kT dn
dz
− n(me +mi)g = 0⇒ n(z) = n0e

−z/H , H = 2kT
mig

(2.34)

where we neglectedme with respect tomi. Therefore we show the scale-height of the ions
is twice the one it would be in a neutral atmosphere (the ions and electrons both have
now an effective mass mi/2). The ambipolar electric field responsible for this effect is
usually named the Pannekoek-Rossland electric field (Pannekoek and Rossland studied
this effect in the solar atmosphere in the 1930’s), EPR(z) = mig/2e.
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2.4.3 Exercise : the ambipolar diffusion

We consider the diffusive motion of a cloud of plasma in a neutral gas of density
independent of r. We consider that the collisions between the plasma particles and the
neutral gas produce a friction force fα = ναuα. With να the collision frequency between
neutral and the population α. We assume that the friction dominates over convection,
so that the motion of the population α is essentially diffusive and is described by the
equation

0 = −kT∇nα + nαqαE(r) + nαναuα (2.35)

What would the diffusion coefficient of each population if there was no electric field ?
What would be the problem, given that the particles are not neutral ? What is the actual
"ambipolar" diffusion coefficient of the plasma in the neutral gas ?

2.4.4 Exercise : Dispersion relation of a "hot plasma"

Instead of considering the cold plasma closure, suppose that the closure is isothermal
pe = nekTe with Te = const.

1. Find the dispersion relation of the plasma waves by looking for normal modes
∼ exp(kx− ωt). What interesting difference arises when taking the temperature
effect into account ?

2. Same question for a polytropic closure of the type dt(pen−γe ) = 0. What relevant
value of γ would you consider ?
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Chapter 3: Collisions in fully ionized plasmas

In this chapter, we study the notion of Coulomb collisions, i.e. collisions of char-
ged particles - which are controlled by the long range coulomb force (at the opposite of
short range dipole-dipole interactions controlling collisions between atoms or molecules).
These collisions are of central importance in the physics of fully ionized plasmas.

We will limit ourselves to the "Lorentzian plasma approximation", in which electrons
are colliding on infinitely massive ions. In such a model, there cannot be energy exchange
between electrons and ions 1, only momentum exchange. It is enough to describe several
interesting transport properties of the plasma, while keeping the math simple.

3.1 Large angle deflections
The deflection angle α of an electron when passing by a ion depends on the impact

parameter b. To have an angle α ∼ 1, we need the electron to pass close enough from
the ion for the electrostatic interaction energy to be of the order of its kinetic energy 2

Zq2
e

b
∼ 1

2mv
2 ⇒ b ∼ 2Zq2

e

mv2 ≡ bL(v). (3.1)

This "Landau impact parameter" bL is defined as the electron-ion distance for which the
electrostatic interaction energy equals the kinetic energy, and is related to the thermal
Landau length by bL(v) = λL(vth/v)2.

Therefore, we define the cross-section for large angle collisions as σl.a. = πb2
L(v). The

associated electron mean-free path is λl.a. = (nσl.a.)−1 where n is the density of ions, and
the mean time between collisions is ∆t ∼ λ/v ∼ (nσl.a.v)−1. The mean change in particle
angle per unit time under the action of large angle collisions is ∆α/∆t ∼ nσl.a.v ∝ v−3.
One must note the very strong decrease in the efficiency of the Coulomb collisions with
the electron’s speed (we will recover the same effect for small angle collisions). This
dependency has critical consequences for plasma physics, that we will discuss in the fol-
lowing.

1. For instance, ions and electrons populations of different temperatures cannot relax to a thermalized
system

2. we use in whole of this section the notation qe ≡ e/
√

4πε0
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We have seen in the previous chapter (sec. 2.2.2) that in a plasma λL ∼ Γ2/3`� `, so
the Landau length will usually be by order of magnitude larger than the interparticular
distance : we can then expect large angle collisions to be very unfrequent. An order of
magnitude of their mean-free path is

λl.a. ∼ (nσl.a.)−1 ∼ `3

λ2
L

∼ Γ−2λL ∼ Γ−1λD. (3.2)

In the following, we will calculate the mean-free path associated to small angle col-
lisions, and see that large angle deviations are indeed negligible in a plasma.

3.2 Small angle deflections

Figure 3.1 – Geometry of the small angle collision considered

We consider collisions with impact parameter b much larger than bL(v) calculated
in the previous paragraph. These collisions produce only a very small deflection δv in
the velocity of the electron, so, we may calculate this deflection by assuming that the
trajectory r(r) of the electron is a straight line

r(t) = b + vt (3.3)

with b the impact parameter (cf. fig.3.1). t = 0 is the time when the closest approach
is reached, and the ion is supposed at rest at the origin of the coordinate system. The
distance between the electron and the ion is

r(t) =
√
b2 + v2t2. (3.4)

The electric force experienced by the electron at position r(t) is

F(t) = −Zq
2
er(t)
r3(t) . (3.5)
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The total variation of its velocity vector during its travel by the ion is

δv =
∫ ∞
−∞

dv
dt
dt = −1

me

∫ ∞
−∞

Zq2
er(t)
r3(t) dt (3.6)

We can evaluate separately the parallel and perpendicular (with respect to the electron
initial velocity vector) component of the small velocity variation as

δvx = −1
me

∫ ∞
−∞

Zq2
evt

r3(t) dt = 0 ≡ δv‖ (3.7)

since the integrand is odd : obviously, the effect of the electric field on this direction
when the particle arrives to the ion (t < 0) cancels the one when it leaves the ion (t > 0)
and there is no net change in the parallel component of the electron 3. This is different
for the perpendicular component 4,

δvy = −1
me

∫ ∞
−∞

Zq2
eb

r3(t)dt = −2Zq2
e

bmev
= −bL(v)

b
v ≡ δv⊥ (3.8)

The deflection angle α of the electron during this interaction is

α(b) ' |δvy|
v

= bL(v)
b

. (3.9)

The Landau radius b(v) determines the typical distance above which our assumption of
small angle deflection is valid. Indeed for impact parameters much larger than bL, α� 1
and approximating the electron motion by a straight line is justified. For impact para-
meters much smaller, the deflection is by large angles and our treatment is not correct.

Consider a typical collision with an impact parameter equal to the interparticular
length ` and a velocity equal to the thermal velocity. The deflection angle given by
eq.(3.9) is α = λL/` ∼ Γ2/3 � 1. This shows again that typical collisions in plasmas are
by very small angles (reminding that, for instance in the solar wind, Γ ∼ 10−10, typical
collisions make the direction of the velocity of the electron vary by ∼ 10−6 rad).

3.2.1 Angular scattering

Now that we have investigated the case of the interaction between two particles, we
calculate the time evolution of the deflection angle of the electron under the action of
its interaction with all the ions around. The number of targets encountered on a length
element d` along the electron’s trajectory is

dN = n2πbdbd` (3.10)

3. This is because we assumed a straight line trajectory, and because the ion is assumed at rest.
Including these effects will provide a non-zero δv‖, but that will always be of much smaller magnitude
than the change δv⊥

4. You may demonstrate that a primitive of (a+ bt2)−3/2 is (t/a)× (a+ bt2)−1/2 + const.
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Figure 3.2 – Volume containing the encountered targets along d`.

as can be seen on fig.3.2. The mean deflection 〈∆v⊥〉 of the electron during the time
∆t is obtained by summing the deflections δv⊥ due to all these interactions. We first
reformulate eq.(3.8) in a vector form as

δv⊥ = −bL(v)v
b

b
b

(3.11)

and obtain
〈∆v⊥〉

∆t = nbL(v)v2
∫ 2π

0
ub(φ)dφ

∫
db = 0 (3.12)

where ub(φ) = b/b is the unit radial vector in cylindrical coordinates. We see that the
deflection compensate themselves in average : the direction of the electron velocity vec-
tor is not changed.

But we can check that the evolution of the variance 〈∆v2
⊥〉, increases with time.

Indeed the mean square deflection undergone by the electron during the time ∆t is
〈∆v2

⊥〉
∆t = 2πnb2

L(v)v3
∫
db

b
. (3.13)

Unfortunately, this integral, taken between 0 and∞, diverges both in 0 and in∞... The
divergence for b → ∞ comes from the fact that the coulomb interaction is long range
(1/r2). But in a plasma, Debye screening shortens the effective range of the Coulomb
force. So, the integral can be regularized "on physical bases" by limiting the integration
at high values of b to λD – therefore assuming that the interaction potential becomes nul
after this distance. The integral also diverges for b → 0. This is because the deflection
angles become infinite for zero value of the impact parameter. This (incorrect) result
comes from our treatment which assumed small angle deflections. So, we cut the integral
for low values of b at bL(v) – therefore assuming that there are no ions in a range of
distance to the electron smaller than λL. We finally obtain for the variation,

〈∆v2
⊥〉

∆t = 2πnb2
L(v)v3 ln Λ (3.14)
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We introduced the Coulomb logarithm ln Λ = lnλD/λL ∼ ln Γ−1. In most plasma of
interests (whether natural or artificial), the thermal value of the Coulomb logarithm is
ln Λ ∼ 15− 25.

Figure 3.3 – Angular diffusion with a characteristic scattering time ν−1
D , from Helander

and Sigmar 2005 citing Trubnikov 1965.

We see that the variance of the deflection angle α = v⊥/v increases linearly with
time. This is characteristic of an angular diffusion process : the electron undergoes lots
of small angle random deflections. The mean effect is not a net average change in the
velocity direction, but an increase of spread of the probability to find the electron in a
given direction. The diffusion coefficient characterizing this process is

Dα = 〈∆α
2〉

2∆t = πnb2
L(v)v ln Λ = νei

(
vth
v

)3
(3.15)

where we introduced the thermal electron-ion collision frequency

νei = πnλ2
Lvth ln Λ = 4πnZ2q4

e ln Λ
m2
ev

3
th

(3.16)

The collision frequency is then defined, for small angle Coulomb collisions, as the time
it takes for the diffusion effect to substantially spread the distribution of probability to
find an electron at a given angle with respect to a given axis.

To conclude this part, note that the collision frequency obtained νei(v) is equal to
the one that we obtained for large angle collisions in the first section, multiplied by the
Coulomb logarithm ln Λ. It gives another interpretation of the Coulomb logarithm (and
of the plasma parameter Γ) as the ratio of the efficiency of small to large angle collisions
to scatter the plasma particles. Since ln Λ ∼ 20, we see (once again) that small angle
scattering is completely dominant in a fully ionized plasma.

3.2.2 Dynamical friction force and related effects

The angular scattering that has just been described is necessarily accompanied by a
slowing down (a friction) of the electron in the parallel direction. This comes from the
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fact that the total energy E of the electron is conserved in the scattering process. One
has

∆E = 1
2me

(
(v + ∆v‖)2 + ∆v2

⊥ − v2
)

= 0 (3.17)

from which we have,
2v∆v‖ + ∆v2

‖ + ∆v2
⊥ = 0. (3.18)

Since ∆v‖ � v, the first term is much larger than the second one, which can be neglected.
Taking the average of the remaining terms, we get the expression of the parallel slowing
down

〈∆v‖〉
∆t = −1

v

〈∆v2
⊥〉

2∆t = −νei
v3
th

v2 (3.19)

Since this parallel component is applied along the electron velocity vector v, the friction
force on the electron due to the angular scattering can be expressed as

f =
me〈∆v‖〉

∆t
v
v

= −meνei
v3
th

v3 v (3.20)

This is an important and general result : the existence of angular scattering with
a diffusion coefficient Dα produces a dynamical friction force on the scattered particles
f = −meDαv. We now investigate a few interesting effects directly linked to the existence
of this friction force.

Runaway electrons and the Dreicer electric field

An important collisional process in plasma physics is called the runaway effect. It is
due to the fact that the collision frequency decreases strongly with the velocity of the
electron (∝ v−3). Therefore, an electron in an electric field may gain in average energy
from the field in spite of the collisions. The proper description of this effect necessitate
a kinetic treatment ; we propose here a simplified depiction, providing correct orders of
magnitude.

Consider an electron in a constant electric field E, colliding with background ions.
Its kinetic energy (actually its mean "directed" kinetic energy), checks

d

dt

(1
2mv

2
)

= −eE · v−meνei
v3
th

v
. (3.21)

from which we see that an electron having a velocity vlim such that

vlim(E) =
(
meνeiv

3
th

eE

)1/2

(3.22)

will neither lose nor gain energy from the field (it is somehow in equilibrium). An elec-
tron with a velocity v < vlim will be "overdamped", which means that its velocity will
in average decrease under the action of the collisional friction. A particle with a velo-
city v > vlim will be "underdamped", which means that its energy will increase in time
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without limit under the action of the electric field. Such electrons are called "runaway"
electrons. Note that, as small as the applied electric field can be, there will always be a
small fraction of runaway electrons in the tail of the velocity distribution function.

The Dreicer electric field is the value of the electric field for which the thermal
electrons become themselves runaway – at this stage no stable plasma can really exist.
Its value is given by vlim(ED) = vth,

ED = meνeivth
e

. (3.23)

We can now conveniently express vlim(E) = (ED/E)1/2vth.

Runaway electrons are important in plasma physics, since they can take a lot of
energy out of the electric field (they can be responsible for the breaking of plasma state
in lab experiments). They also appear to play an important (although not clearly eluci-
dated) role in lots of astrophysical plasmas.

Subsonic fluid friction and electrical conductivity

We want to calculate the friction force f acting, not on a single particle, but on a
small electron fluid volume of density ne and mean velocity u. This is

f = −mene〈νei
v3
th

v3 v〉 = −meneνeiv
3
th

∫ vd3v
v3 f(v) (3.24)

where f(v) is the distribution of the electron fluid velocities, so that the probability to
find an electron with a speed between v and v + dv is dp = f(v)d3v. We assume that
our fluid element is near-equilibrium, so that f(v) is a Gaussian with thermal speed vth
and a drift speed u such that u� vth. We have

f(v) = 1
(2π)3/2v3

th

e−(v−u)2/2v2
th ' 1

(2π)3/2v3
th

e−v
2/2v2

th

(
1 + v · u

v2
th

)
(3.25)

The integral on the first term is equal to 0, since the integrand is odd. Let’s define z
along the vector u. The x and y components of f are equal to 0 (odd integrands). So the
only component left is along z, and is equal to

fz = −meneνeiu

(2π)3/2

∫
v2
zd

3v

v2
thv

3 e
−v2/2v2

th (3.26)

The integral is calculated in spherical coordinates (with the convenient change of variable
µ = cos θ, so d3v = v2dvdµdφ),∫ 2π

0
dφ

∫ 1

−1
µ2dµ

∫ ∞
0

vdv

v2
th

e−v
2/2v2

th = 2π × 2
3 × 1 = 4π

3 . (3.27)
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We finally obtain
f = −mene

2νei
3
√

2π
u ≡ −meneu

τei
. (3.28)

So, there is a factor 2/3
√

2π between the viscous force on the fluid and the force on a
single electron that would have a velocity equal to the thermal velocity. In several re-
ferences, the friction timescale τei = 3

√
2π/2νei is introduced, as in the previous equation.

The expression of this viscous force makes it possible to easily calculate the electric
conductivity σ of a plasma. We consider the ions at rest, so that the current density
and the electric field are linked by j = −enu = σE. We consider values of the electric
field much smaller than ED, so that we can neglect runaway effects : all the conduction
electrons are assumed to be underdamped, so that a steady state can be reached in the
plasma. The equation describing this steady state is

0 = −eE−meu/τei, (3.29)

so that the steady-state value of the fluid velocity is

u = −eτei
me

E (3.30)

from which we find the value of the plasma conductivity

σ = ne2τei
me

(3.31)

Space plasmas are, to rare exceptions, never really close to equilibrium (the collisional
mean-free paths are usually, for a large part of the electron energy distributions, much
larger than the typical gradient scales of the system considered). The expressions of the
conductivity given here is thus to be taken very cautiously.

3.3 Examples and exercises

3.3.1 Ionization cross section

Although a bit outside of the Coulomb collision topic, it is interesting to note that
we can use a procedure similar to the one previously employed in order to derive the
Thomson formula, seen in the first chapter, for the classical ionization cross section of
an atom by electron impact.

We consider the energy transfer from an electron moving in a straight line with
impact parameter b and energy E = mev

2/2 with respect to an electron bound to an
atom situated at the origin of the coordinate system. Equation (3.8) gives us δv⊥, from
which we can calculate δε = meδv

2
⊥/2. We have

δε(E, b) = q4
e

Eb2 (3.32)
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Figure 3.4 – Ionzation cross section as a function of the incident electron’s energy and com-
parison of the classical formula to experiment.

We can express the differential cross section

dσ = 2πbdb = πq4
e

Eδε2dδε. (3.33)

For ionisation to occur, we need the energy transferred δε to be larger than the first
ionisation energy W . On the other hand, the energy transferred cannot be larger than
the initial energy E of the electron. The ionisation cross section is obtained by integrating
the differential cross-section between these to energies,

σI = πq4
e

E

∫ E

W

dδε

δε2 = πq4
e

E −W
E2W

= πq4
e

W 2

(
W

E
− W 2

E2

)
(3.34)

which is the Thomson formula and is illustrated on Fig.3.4.

3.3.2 Exercise : Slowing down of a fast ion by cold electrons

The problem of angular scattering of the electrons treated in the previous section is
complementary to the problem a fast ion travelling in a cold electron population. The
ion, through its motion, will induce small changes in the electron velocities, and will
therefore transfer some of its energy to the electron population. We assume that the ion
moves at a constant velocity vion.

1. Calculate the energy transfer transferred from the ion to an electron, during the
interaction with a single electron.
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2. Calculate the energy transfer per unit time, integrating on all electrons.
3. What is the slowing down timescale νie ? Compare to the electron scattering

frequency νei.

3.3.3 Exercise : ambipolar electric field and Dreicer limit

Consider a gravitationally confined plasma. We have seen that an ambipolar electric
field must exist to ensure quasi-neutrality in such a plasma. Under what conditions would
this electric field be larger than the Dreicer field ? What would happen then ?
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Chapter 4: Charging of a macroscopic object in
a plasma

A plasma is composed of charged particles, animated by a thermal motion. An ma-
croscopic object immersed in a plasma will, as a consequence, collect thermal electric
currents onto its surfaces. So, the object will charge itself, and reach some electric po-
tential, that will in turn modify the values of the currents.

The total charge Q of the object is determined by the equation

dQ

dt
= Ie + Ii + Iph + Isec + ... (4.1)

where the right-hand side sums the different current resulting from different processes
(from left to right : electron current, ion current, photo-electron emission current, se-
condary electron emission current, others...). Note that the orientation of the currents
is chosen positive for currents ongoing to the object. The equilibrium charge will be
determined by the condition dQ/dt = 0 ; so, it is reached when all the currents on the
object cancel each other.

4.1 Expression for the currents
We develop here a simplified but practical model for the electric currents. We assume

that the object’s surface is at a position z = 0 and is infinite along the directions x and
y of a cartesian frame. We assume that the object has a potential ϕ, and introduce the
subscript α = i, e to refer to a plasma population.

4.1.1 Plasma currents

If qαϕ < 0, then the potential is attractive and all the particles can reach the surface.
Assuming that the velocity distribution of the specie α is a Maxwellian, the current onto
the surface is given by

Iα = qαS

∫ ∞
0

nα√
2πvth,α

e−v
2
z/2v2

th,αvzdvz = Iα,0 (4.2)
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where
Iα,0 = qαnαvαS (4.3)

here we introduced vα = (kTα/2πmα)1/2, S is the surface of the object and the thermal
velocity is vth,α =

√
kTα/mα).

Now if qαϕ > 0, the potential is repulsive and only the particles having a z component
of their velocity vector larger than

√
2qαϕ/mα can reach the surface of the object. The

expression of the current onto the surface S is

Iα(ϕ) = qαS

∫ ∞
√

2qαϕ/mα

nα√
2πvth,α

e−v
2
z/2v2

th,αvzdvz = Iα,0 exp
(
−qαϕ
kTα

)
(4.4)

Note that to obtain these expressions, we neglected a possible drift velocity of the
charged population with respect to the surface, and consider only the thermal motion.
This is nearly always a very good approximation for electrons, but in general not true
for ions, for two reasons :

— In space environments, ions flow will in general be supersonic (the solar wind ion
fluid is supersonic, and orbital velocities of spacecraft for instance in the ionos-
phere are in general quite larger than the ion thermal speeds). The ion speed to
consider in the expression of the current is then vi = ui, the drift speed of ions
with respect to the surface.

— It can be shown that the ions (if the plasma flow to the surface is initially subsonic,
typically what happens in laboratory electrostatic discharges) must enter the
sheath at the Bohm speed 1 vi = vB =

√
kTe/mi in order for a stable, steady-

state sheath to be maintained.

4.1.2 Photoelectron and secondary electron currents

Some charging currents do not originate from the plasma, but from the charged sur-
face itself. It is the case when the surface is illuminated by ionizing radiation, and emits
photo-electrons or secondary electrons. Here, we discuss the case of photoelectrons and
use the subscript "ph", but the discussion and expressions are exactly the same for emis-
sions of secondary electrons.

In the case of a repulsive potential ϕ < 0, all of the electrons will leave the surface
and the current will be

Iph = eSlitJph,0 (4.5)

where Jph,0 is the photo electron flux at zero potential, which depends only on the sur-
face illumination and on the physical properties of the illuminated material. Slit is the
surface receiving the UV light. Mind the sign of the expression, which comes from our

1. This is called the Bohm sheath criterion
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convention of orientation of the currents, cf. eq.(4.1).

If ϕ > 0, the potential is attractive and only the fastest electrons will leave the
surface. Others will be attracted back and not contribute to the escaping current. We
have

Iph(ϕ) = eSlitJph,0

∫ ∞
√

2eϕ/me

1√
2πvth,ph

e−v
2
z/2v2

th,phvzdvz = eSlitJph,0 exp
(
− eϕ

kTph

)
.

(4.6)
The photoelectron distribution has been assumed to be Maxwellian with a temperature
Tph. Note that in reality, emitted photo or secondary electrons are usually not well mo-
deled by a single Maxwellian, and multi-temperature models are often used.

4.2 Expressions of the floating potential

4.2.1 In a plasma : electron and ion current only

We consider the case were only the two first terms in the right-hand side of eq.(4.1)
are of importance. We can see that, because of the small electron mass, we shall in gene-
ral have Ie,0 � Ii,0, and the object will tend to charge negatively. Therefore all protons
will be collected (the ion current is then independent of the value of the potential, and is
for this reason usually called the ion "saturation current"), whereas the electron current
will depend on ϕ.

The potential reached in equilibrium is obtained from the condition dQ/dt = 0,

ϕeq = kTe
e

ln
(
vi
ve

)
= −kTe2e ln

(
mi

2πme

)
(4.7)

where the last equality assumes an ion current given by the Bohm criterion (typical case
for laboratory measurements). In the case of a supersonic flow, vi must be replaced by
ui and the ion mass does not appear in the expression any more.

The object then carries an equilibrium charge Qeq = Cϕeq, with C the capacitance
of the object. The equilibrium potential is then a few times the plasma electron tempe-
rature.

4.2.2 A sunlit surface : objects in the interplanetary space

In the vicinity of the Sun, objects receive ionizing solar UV. For an order of magnitude
at 1 AU, Jph,0 ∼ 50 µA/m2, which is much larger than the typical electron current from
the interplanetary "solar wind" plasma onto the object (which is Ie,0/S ∼ 0.5 µA/m2 at
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1 AU). Therefore in typical interplanetary conditions, an object is charged positively.

We can obtain the equilibrium potential of, say, a spacecraft in the interplanetary
space by using eq.(4.1), and neglecting the ion current

ϕeq = kTph
e

ln
(
Jph,0Slit
eneveS

)
(4.8)

which is a few times the photo-electron temperature expressed in eV. For typical solar
wind conditions, ϕeq ∼ 5− 10 V. Interestingly this value does not depend much on the
distance from the Sun, since Jph0 and ne both vary as the inverse square of the distance
from the Sun, so their ratio is approximately a constant.

4.2.3 Charge of a dust grain in the interplanetary medium

This has interesting consequences for the physics of dust grains in the interplanetary
medium. The charge of a dust of size a is q ∼ Cϕeq, with ϕeq given by eq.(4.8) and
C ' 4πε0a being the capacitance of a sphere of radius a – which is a good approxima-
tion since a is much smaller than the local Debye length (which is of the order of 10 m
in the solar wind at 1 AU).

Therefore the charge carried by a dust grain varies linearly with is size, Q ∼ a. On
the other hand, the mass of a dust grain is proportional to its volume, so the charge on
mass ratio of a grain is inversely proportional to the square of its size, Q/m ∼ a−2.

This has important consequences on the interplanetary dust cloud dynamics : small
dust grain have an important charge on mass ratio, and their dynamics will be strongly
influenced by the Lorentz force (they will behave as very heavy ions) whereas large grains
will be influenced by gravitational force only and have roughly Keplerian orbits.

4.3 Principle of the Langmuir probe
We can now understand the working principle of an important plasma sounding de-

vice : the Langmuir probe. The idea is to place a conducting device in a plasma and to
bias it at some potential ΦB. Measuring the intensity I(ΦB) flowing through the device
will let us estimate the density and temperature of the plasma.

In a plasma, without photoelectron emission effect, the characteristic curve looks like
the one presented in Fig.4.1, and can be interpreted as follows (the orientation of the
current is toward the plasma) :
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Figure 4.1 – Typical characteristic curve of a Langmuir probe, showing the current I drawn
from the probe as a function of the applied bias voltage ΦB . Labels are Φf , floating potential ;
Φp, plasma potential – in our model, Φp = 0 ; ISi, ion saturation current ; ISe, electron saturation
current. From J.D. Callen, Fundamentals of plasma physics, 2003. Note that the convention for
the orientation of the current is upward (to the plasma, opposite from the convention of the first
section of this chapter).

— At ΦB → −∞, the collected current is almost completely ionic and is the ion sa-
turation current ISi = −n0evi, where vi is the ion velocity at the entrance of the
sheath. In a steady laboratory plasma experiment (which the fig.4.1 illustrates),
it is given by v2

i = kTe/mi.

— At ΦB → +∞, the collected current is almost completely electronic. It is the elec-
tron saturation current ISe = n0eve, where ve is typically the thermal agitation
speed, v2

e = kTe/(2πme).

— At I = 0, the potential is by definition the floating potential, that the probe
would have if let passively in the plasma, Φf = −(kTe/2e) lnmi/2πme (using the
Bohm sheath criterion).

— In the region ΦB < 0 (ΦB < Φp on fig.4.1), the current varies exponentially with
the applied voltage, since Ie ∝ exp(−eΦB/kTe). Plotting this part in log-log then
makes it possible to determine robustly the electron temperature.

So, the characteristic makes it possible to determine independently and robustly
determine the plasma temperature and the plasma density at infinity from the probe n0.
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4.4 Exercise and examples

4.4.1 Exercise : levitation of lunar dust

Figure 4.2 – From Colwell et al, 2009

When illuminated by the Sun, the lunar surface charges positively under the action of
photoelectron emission. A photoelectron sheath is present above the surface. Its density
is given by

npe(z) = npe0

(
1 + z√

2λD

)−2
(4.9)

where z is the altitude, npe0 the density at the ground level, and λD is the photoelecton
Debye length calculated with the density npe0 and a temperature Tph ∼ 3 eV.

Calculate the altitude at which a dust grain levitates, as a function of its typical
radius r.
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4.5 The Bohm sheath criterion*
In chapter 2, we made a model of the plasma sheath next to a charged surface.

Although practical to highlight the role of the Debye length, this model happened to
not be completely accurate, because of an inappropriate modeling of the ions dynamics.
Assume the object is charged negatively. The electrons or ions dynamics in a steady
state is given by

nαuα
duα
dz

= kTα
dn

dz
− nαqα

dϕ

dz
(4.10)

The ratio of the the macroscopic kinetic energy term to the pressure term is of the order
of the square of the Mach number Ma2 = u2/v2

th,α, where the directed kinetic eneregy
that a particle can acquire is of the order of the electrostatic potential drop ϕ ∼ kTe.
For electrons, both terms are of the same order of magnitude – for the sake of simplicity,
we will drop the kinetic energy term and assume that the electron density is given by
the Boltzmann law

ne(z) = n∞e
eϕ(z)/kTe . (4.11)

On the other hand, because of the ion to electron mass ratio, the ion square mach number
is by 3 orders of magnitude larger than the pressure term : our previous modeling of
the ions as in Boltzmann equilibrium is not adequate, and we must instead calculate its
density from the dynamics equation,

1
2miui(z)2 + eϕ(z) = 1

2miui(∞)2 ⇒ ui(z) =
√
ui(∞)2 − 2eϕ(z)

mi
(4.12)

together with the continuity equation

ni(z)ui(z) = n∞ui(∞)⇒ ni(z) = n∞√
1− 2eϕ(z)/(miui(∞)2)

. (4.13)

The potential in the sheath is thus given by the Poisson equation, but with the ion
density given by eq.(4.14) instead of the Boltzmann formula. The resulting equation is
strongly non-linear and no analytical solution can be found. Numerical solutions can be
used for a proper modeling of the sheath. But in order to get a qualitative modeling of
the sheath, we may just linearize the equation by assuming that eϕ � kTe,miui(∞)2.
The linearized Poisson equation is

d2ϕ

dz2 = 1
λ2
D,e

(
1− kTe

miui(∞)2

)
ϕ (4.14)

where λ2
D,e = ε0kTe/n∞e

2. If the parenthesis in the right hand side is negative, then
we have for solution an harmonic oscillator : this is incompatible with our boundary
conditions implying a steady plasma at infinity. So, the plasma must somehow organize
itself so that the ions velocity at the entrance of the sheath verifies Bohm’s criterion

ui >

√
kTe
mi

, (4.15)
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and the right hand side is sometimes called Bohm’s velocity. In fact, the criterion is
usually just fulfilled, and for practical cases it is possible to assume that ions practically
enter the sheath with Bohm’s speed.
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Chapter 5: Motion of a charged particle in elecro-
magnetic fields

We have seen that plasma systems are characterized by a strong coupling between
the dynamics of the particles and those of the electromagnetic field. To understand a
plasma, it is therefore of fundamental importance to have a clear understanding of the
motion of charged particles in prescribed electromagnetic fields. This part introduces the
main aspects of particle motions in given fields.

In whole of this section, B = Bb is the magnetic field vector. B is its modulus and
b the unit vector along the magnetic field line. The parallel component of a vector is
its scalar product with b, for instance v‖ = v · b. Its perpendicular component is the
remaining, v⊥ = v− v‖b.

5.1 Charged particle in constant fields
We start by the most simple case, where the magnetic and electric fields are constant

in time and space. So we have here B = const., and b = const..

5.1.1 The cyclotron motion

In the absence of an electric field, the Lorentz force acting on a particle of charge q
and mass m is F = qv×B. This force does not produce any work on the particle, since
F · v = 0 all the time. The kinetic energy of a particle in purely magnetic field is thus a
constant of the motion.

Separating the equation of motion between parallel and perpendicular components
we obtain {

v̇‖ = 0
v̇⊥ = ωcv⊥ × b.

(5.1)

where we introduced the gyro-frequency of the particle 1 ωc = qB/m. Thus, the parallel
component of the particle’s velocity is a constant of the motion, and the norm of its

1. Note that ωc is an algebraic quantity, that can be positive or negative depending on the sign of q.
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Figure 5.1 – Cyclotron motion of positively and negatively charged particles. The current
I ∝ qv is oriented in the same direction in both cases, hence the anti-parallel direction of the
magnetic moment, independent of the particle’s charge (cf. sec.5.1.2).

perpendicular component is another one. Introducing two cartesian axis (x, y) in the
plane perpendicular to b, and using the complex notations v̄⊥ = vx + ivy we obtain

˙̄v⊥ = −iωcv̄⊥ ⇒ v̄⊥ = v̄⊥(0)e−iωct (5.2)

and the trajectory of the particle is given by

˙̄r⊥ = v̄⊥ ⇒ r̄⊥ = r̄⊥(0) + iv̄⊥(0)
ωc

(
e−iωct − 1

)
. (5.3)

So, the particle describes a circle in the perpendicular plane. The radius of this circle
is ρ` = |v⊥/ωc|, and is called the Larmor radius of the particle (and is a positive quan-
tity). A particle with a positive charge describes a clockwise circle around b (right-hand
polarization), whereas a negative charge describes an anti-clockwise circle (left-hand po-
larization with respect to the magnetic field).

A bit more useful vocabulary : the angle of the velocity vector with respect to the
magnetic field line is called the pitch-angle θ,

θ = arccos
v‖
v

= arctan v⊥
v‖

(5.4)

The rotation phase of the particle in the perpendicular plane is called the gyro-phase,

ϕ(t) = ωct+ arg iv̄⊥(0) (5.5)

The gyrophase-averaged position of a particle is called its guiding center position Rg.
In the present case,

Rg(t) = Rg(0) + v‖tb, (5.6)
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Figure 5.2 – Trajectories of a positively charged particle in a constant magnetic field directed
along the z axis, for three different values of its pitch angle (θ = 10◦, 45◦, 80◦ from left to right.
Distances are normalized by the particle’s Larmor radius.

the guiding center follows the straight magnetic field line, with a constant velocity.

In relativistic regime, the equation of motion is ṗ = qv × B with p = γmv and
γ = (1 − v2/c2)−1/2 is the Lorentz factor. Since v = const., the Lorentz factor is a
constant as well and the analysis made above holds, with the change ωc = qB/γm. The
Larmor radius is ρ` = γmv⊥/qB = p⊥/qB with p the Lorentz-invariant momentum.

A last point of vocabulary. In the context of particle physics, the momentum of a
particle in a magnetic field is often described through its rigidity, which is counted in
Volts and defined as

R = ρ`cB = p⊥c

|q|
(5.7)

Useful orders of magnitudes are :
— Electron gyro-frequency

ωc,e [rad.s−1] ' 176B[nT]
γ

fc,e [Hz] ' 28B[nT]
γ

(5.8)

— Ion gyrofrequency (atomic number Z, mass number A)

ωc,i [rad.s−1] ' 10−1Z

A

B[nT]
γ

fc,i [Hz] ' 1.5× 10−2Z

A

B[nT]
γ

(5.9)

— Larmor radius (non-relativistic limit, E⊥ = p2
⊥/2m = mv2

⊥/2)

ρ`,e [km] ' 3.4
√

E⊥ [eV]
B [nT] ρ`,i [km] ' 144

√
E⊥ [eV]
B [nT] ×

√
A

Z
(5.10)

where E⊥ is the perpendicular kinetic energy of the particle.
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— Larmor radius (ultra-relativistic limit, E⊥ = p⊥c)

ρ` [A.U.] ' 2× 10−2 E⊥ [GeV]
B [nT] ≡ 2× 10−2R [GV]

B [nT] (5.11)

5.1.2 Plasma diamagnetism

Charged particles in a field B0 rotate in such a way to produce a current that in turn
generates a magnetic field δB that opposes B0. So, the plasma is a diamagnetic medium.
The microscopic magnetic moment µ associated to the current loop of a gyrating particle
is

µ = IS = −qωc2π πρ
2
`b = −E⊥

B
b. (5.12)

It is independent of the particle’s charge, since qωc > 0 whatever is the sign of the
particle. The magnetization vector of the plasma is the volumetric density of magnetic
moment, which, in a plasma of density n, is

M = 2nµ = −2nkT⊥
B

b, (5.13)

if we assume that the electrons and ions have the same temperature kT⊥ = 〈E⊥〉. Note
that the plasma is not a linear medium.

Figure 5.3 – Illustration of the origin
of the plasma magnetisation current.

Consider the following situation : a system of
currents jext, external to the plasma (for example
circulating in a solenoid), produces a magnetic
field B0 in the plasma. What decrease in the ma-
gnetic field inside the plasma will be produced by
the plasma pressure ? Using Ampère’s law, which
in the magnetized medium, is

∇×B = µ0 (jext + ∇×M) = ∇× (B0 + µ0M)
(5.14)

we have in the plasma

B = B0 +µ0M '
(

1− nkT⊥
B2

0/2µ0

)
B0 ' (1−β)B0

(5.15)
where we have introduced the dimensionless
plasma β parameter, equal to the ratio of the
plasma pressure to the magnetic field pressure.
Strictly speaking, our expression is valid only
in the limit of very small values of β (since
the magnetization has been calculated from the
external field B0 and not self-consistently from
the plasma magnetic field B). This expression
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shows that the thermal pressure decreases the
value of the external magnetic field inside the
plasma.

The current density associated to this magnetization appearing in Ampère’s law is

jmag = ∇×M = −∇(2nkT⊥)× b
B

(5.16)

and is called the magnetization current. It is perpendicular both to the magnetic field
and to the pressure gradient. This current is not associated to a physical displacement
of charged particles in the volume of the plasma, but results from the non-compensation
of the currents carried by the Larmor rotation of the particles when a pressure gradient
exists.

5.1.3 Constant electric field

In the presence of a constant electric field, the equation of motion of the charged
particle are now {

v̇‖ = qE‖/m

v̇⊥ = ωcv⊥ × b + qE⊥/m.
(5.17)

Therefore, the motion along the magnetic field is uniformly accelerated, just as it would
be in the absence of the magnetic field,

v‖(t) = v‖(0) +
qE‖t

m
r‖(t) = r‖(0) + v‖(0)t+

qE‖t
2

2m (5.18)

The motion in the perpendicular plane consists of two components. The first is given
by the solution of the homogeneous equation, and correspond to the cyclotron motion,
as studied in the begnining of this section – cf. eqs.(5.2)-(5.3) . The second component
is given by a particular solution to the differential equation. A trivial solution is the one
with constant velocity v̇⊥,p = 0,

v⊥,p × b = −qE⊥
mωc

⇒ v⊥,p = E⊥ × b
B

. (5.19)

This constant perpendicular velocity appearing in the presence of an electric field is
called the "E cross B" drift, or "cross field drift" velocity and plays a very important role
in plasma physics.

v× = E×B
B2 (5.20)

Importantly, this drift does not depend on the charge nor on the mass of the particles :
under the action of a constant electric field, the plasma drifts as a whole in the direction
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both perpendicular to E and B.

A direct and important interpretation of this drift comes the transformation of the
electric field by a change of frame of reference. In the non-relativistic limit, the change is
E′ = E+uR′/R×B, while the magnetic field is invariant by a Galilean change of frame.
Therefore, it is always possible to find a frame in which the electric field vanishes, and
the motion of the charged particle consists in the pure cyclotron motion. The velocity
of this specific frame of reference checks

uR′/R ×B = −E⇒ uR′/R,⊥ = E×B
B2 = v× (5.21)

so, its perpendicular component is just the cross-field drift velocity (its parallel com-
ponent is undetermined and can be anything). The velocity of the particle in the frame
R is then the superposition of the cyclotron motion, which is the only motion in R′, and
the motion of the frame R′ with respect to R. Therefore, one can think of the cross field
velocity v× = uR′/R as the velocity of the magnetic field lines themselves.

Exercise : Plasma in a solenoid. One translates the solenoid at a speed V . What is
the dynamics of the plasma ?

5.1.4 Constant force field

Under the action of an homogeneous force field F, the analysis performed in the
specific case of the electric field still holds. One just have to replace E by F/q, and
obtain the generic expression for the force drift

vF = F×B
qB2 (5.22)

this force drift depends on the charge of the particle (if F does not depend linearly on
q). Therefore, ions and electrons will in general drift in opposite directions, producing a
drift current, and a polarization of the plasma. Gravitational and inertial forces are, for
this reasons, responsible for the appearance of plasma currents.

5.2 Motion of particles in inhomogeneous fields
In this section, we consider the motion of particles in fields that can vary in space

and time, under the assumption that the variation of the fields are small on time and
length scales associated with the cyclotron motion : ρ` ·∇� 1

5.2.1 Guiding center motion : general equations

We separate the particle motion into its cyclotron motion, and the guiding center
motion :

r(t) = Rg(t) + r`(t), v(t) = Vg(t) + v`(t), (5.23)
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where v`(t) = ṙ`(t) is perpendicular to b and given by eq.(5.2). Averaging over the cy-
clotron motion, we have 〈r(t)〉 = Rg(t), and 〈v(t)〉 = Vg(t).

The motion of a particle in the fields E(r, t) and B(r, t) is described by the equation

dVg

dt
+ dv`

dt
= q

m
(E(Rg) + r` ·∇E(Rg) + (Vg + v`)× (B(Rg) + r` ·∇B(Rg))) .

(5.24)
where we made a linear approximation of the fields on the scale ρ`. Averaging over the
cyclotron motion and retaining only the zeroth order terms, we have,

E(Rg) + V(0)
g ×B(Rg) = 0⇒ V(0)

g = E(Rg)×B(Rg)
B(Rg)2 = v×(Rg) (5.25)

where dV(0)
g /dt has been assumed a first order term, and where the electric field has

been assumed to have no parallel component 2. The perpendicular motion, at zeroth
order, just consists in the cross field drift calculated from the value of the fields at the
particle’s guiding center position. So, at the order 0, the guiding center motion is exactly
the one that was described previously in the case of homogeneous field, which was to be
expected, since at the order 0, the fields are indeed homogenous.

We now go to the order 1, where new physical effects appear, linked to the existence
of gradients in the fields. After averaging over the cyclotron motion, all the terms linear
in v` and r` vanish and we have

dV(0)
g

dt
= q

m

(
V(1)
g ×B(Rg) + 〈v` × r` ·∇B(Rg)〉

)
. (5.26)

The term in bracket does not average out to zero, since it is quadratic in v` and r`.
We can show that

〈v` × r` ·∇B(Rg)〉 = − v2
⊥

2ωc
∇B = −µ

q
∇B (5.27)

We write the term V(0)
g = v‖b + v×. So, its time derivative can be written as

dV(0)
g

dt
=
dv‖
dt

b + v‖
db
dt

+ dv×
dt

(5.28)

These three last equations constitute the basis to study the motion of the guiding
center in inhomogeneous fields. Note that the electric field inhomogeneity plays no role
in this motion 3. In the next paragraph, we first investigate the motion in the parallel
direction, and then will look at the perpendicular drifts.

2. In the presence of a parallel electric field, the parallel motion is just given by dVg,‖/dt = qE‖/m
3. Actually, it intervenes as a second order effect, involving the second space derivative of E(r)
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5.2.2 Magnetic moment conservation, and mirror force

Taking the scalar product of eq.(5.26) with b, we obtain

m
dv‖
dt

= −µb ·∇B (5.29)

So, the right hand term plays the role of a pseudo-force, modifying the parallel com-
ponent of the velocity in the presence of converging or diverging field lines. It is called
the magnetic mirror force.

As a consequence of eq.(5.29), the magnetic moment µ of the particle is a constant
of the particle motion. Indeed, the variation of the parallel kinetic energy is

d

dt

(1
2mv

2
‖

)
= −µv‖b ·∇B = −µdB

dt
(5.30)

where we have assumed that the magnetic field does not vary with time (∂tB = 0). Since
the effect does not involve any electric field, it lets the particle kinetic energy constant.
We must have

d

dt

(
E⊥ + E‖

)
= d

dt
(µB)− µdB

dt
= B

dµ

dt
= 0 (5.31)

since B 6= 0, the magnetic moment µ must be conserved along the particle’s trajectory.
It is in fact an adiabatic invariant of the particle’s motion, valid even for intrinsic time-
variations of the magnetic field, given these happen on timescales much slower than ω−1

c .

One may conveniently rewrite the conservation of the particle’s kinetic energy as

1
2mv

2
‖(s) + µB(s) = E = const. (5.32)

where s is a coordinate along a magnetic field line. Since µ is a constant, the magnetic
field modulus B(s) plays exactly the role of a potential energy for the parallel motion :
a strong increase of the magnetic field (corresponding to a strong convergence of field
lines) will reflect charged particles like mirrors.

Magnetic bottle

Amagnetic field configuration with two strong convergence points is called a magnetic
bottle. Such a configuration is characterized by its mirror ratio Rm = Bmax/Bmin, which
characterizes its efficiency to trap particles. A particle will escape the bottle if its total
kinetic energy checks E > µBmax. If we call θmin the pitch-angle of the particle at the
position where the magnetic field is Bmin, then the escape condition reads

sin2 θmin <
Bmin
Bmax

= 1/Rm. (5.33)
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Figure 5.4 – Particle trajectory in the magnetic bottle produced by the converging field lines
of a planetary dipole.

Eq.(5.33) defines the angle θm = arcsin
√

1/Rm of aperture of a cone in velocity space,
called the loss cone. The particles inside the loss cone will able to escape the magnetic
trap. Therefore the plasma velocity distribution function inside a magnetic bottle is
usually not an equilibrium Maxwellian, but rather a Maxwellian minus the loss particles
(if collisions are completely neglected). Collisions (or electromagnetic instabilities) will
tend to randomize the values of the particle’s pitch angles, and as a consequence to send
particles inside the loss cone, producing a leak in the bottle.

Conservation of magnetic flux through the particle ring current

A consequence of the mirror force is that the flux of the magnetic field through a
surface resting on the contour defined by the Larmor radius of the particle is always
conserved. This can be easily seen from the expression of this flux

ΦB =
∫∫

B · dS ' B(s)πρ(s)2 = πm2

q2
v2
⊥
B

= 2πm
q2 µ = const. (5.34)

This result is convenient to represent oneself the trajectory of a charged particle : the
trajectory is wrapped around a magnetic flux tube. This is illustrated by fig.5.4.

5.2.3 Perpendicular drifts

We obtain the perpendicular motion of the guiding center by taking the vector pro-
duct of eq.(5.26) by b, we obtain

V(1)
g,⊥ = 1

ωc
b×

(
µ

m
∇B +

dV(0)
g

dt

)
(5.35)

The first term in the parenthesis is called the "grad B" drift. The second term des-
cribes inertial effects due to the acceleration of the guiding center at zeroth order. Using
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eq.(5.28), we get
V(1)
g = 1

ωc
b×

(
µ

m
∇B + v‖

db
dt

+ dv×
dt

)
(5.36)

The second term is named the curvature drift, and the third term the polarization drift.
We note that none of the terms in the parenthesis depend on the particle charge or mass.
So, the only mass and charge dependence are contained in ωc. This has two consequences :
first, electrons and ions will drift in opposite directions, creating polarisation currents in
the plasma. Second, all of these drift speeds are proportional to the mass/charge ratio,
and therefore will be essentially carried by the ionic species in the plasma.

Grad-B drift

The gradient drift stems from the existence of a perpendicular gradient of the ma-
gnetic field modulus. The expression of the drift speed is

v∇ = µ

q

B×∇B
B2 = −mv

2
⊥

2qB
∇B ×B
B2 (5.37)

In this case the guiding center will drift in a direction both perpendicular to the field
and to the gradient. Qualitatively, it can be seen as the fact that the larmor radius is
slightly smaller in the region of large field than in the region of small field, making the
trajectory a cycloid in the direction perpendicular to ∇B.

Curvature drift

The total derivative of b along the particle’s trajectory is
db
dt

= ∂tb + v ·∇b = ∂tb + v× ·∇b + v‖b ·∇b (5.38)

And this inertial drift is strictly speaking composed of three terms. In practice, one nearly
always have v‖ � v× and v‖b · ∇ � ∂t (i.e. the particle will perceive spatial changes in
the direction of B on its way along the field line much faster than any intrinsic temporal
change in the field line direction). Then, the drift is almost only due to the curvature
term. Introducing the local curvature radius of the field line Rc, such that

b · ∇b = − n
Rc

(5.39)

where n is the unit vector perpendicular to the trajectory (oriented outward from the
center of curvature), one may conveniently express the drift as

vc = m

q

B× v2
‖(b · ∇b)
B2 =

mv2
‖

qRc

n×B
B2 (5.40)

Finally, let’s note that the left part of the vectorial product is the centrifugal force
F = mv2

‖n/Rc applied on a particle following a curved trajectory at constant velocity
v‖. This curvature drift then appears to be the force drift eq.(5.22) associated to the
centrifugal force.
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Polarization drift

The last term of eq.(5.36) involve the time derivative of the cross field drift. It makes
it possible to investigate the effect of the time variation of an applied perpendicular
electric field Ė⊥. The drift speed is in this case

vp = m

qB2
B× (Ė⊥ ×B)

B2 = m

qB2
dE⊥
dt

, (5.41)

and is called the polarization drift. This drift is (for once) parallel to the applied electric
field, and produces an important contribution to the perpendicular polarisability (or
dielectric response) of a plasma, hence its name. The polarisation current produced by
applying an AC electric field to a plasma is (neglecting the electron contribution),

jp '
nmi

B2
dE⊥
dt

= ∂P
∂t
⇒ P ' nmi

B2 E⊥ ≡ χ⊥E⊥ (5.42)

where P is the plasma polarisation vector, χ⊥ = nmi/B
2 the plasma polarisability and

ε⊥ = ε0(1 + χ⊥/ε0) the (perpendicular) dielectric constant of the magnetized plasma.

5.3 Adiabatic invariants
A periodic motion of period T is characterized by the existence of Poincaré invariants,

which stay approximately constant under variations of the system parameters that are
slow compared to T . These invariants take the form

I =
∮
p · dq (5.43)

where p and q are conjugate dynamical variables, and the closed integral implies is
performed on a full period, which indeed describes a closed curve in phase space. These
invariants can also conveniently be formulated as an integral over time,

I =
∫
Tq
Wq(t)dt = 〈Wq(t)〉Tq, (5.44)

where Tq is the period associated to the periodic motion of the coordinate q, and Wq is
the energy associated to the cyclic coordinate q.

These integrals can be shown to be conserved to the first order in τ/Tq, where τ is
the timescale on which the perturbation of the system is applied. The demonstration of
this result can be found in any good analytical mechanics monographs.

The existence of these invariants prove very convenient to study periodic motions in
general, and the motion of charged particles in magnetic field in particular. The example
of magnetic bottles, or of a particle trapped in the earth magnetic field, is of interest.
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5.3.1 First adiabatic invariant : the magnetic moment

We first consider the fastest periodic motion of our system, i.e. the cyclotron motion.
The associated adiabatic invariant is

I1 = 〈Wq(t)〉Tq = 1
2mv

2
⊥

2π
ωc

= 2πm
q

µ (5.45)

which is just the magnetic moment of the particle, to constant factor. We recover the
constancy of this quantity, that we’ve demonstrated through the mirror force, for a time
varying magnetic field.

5.3.2 Second adiabatic invariant : bounce motion

In a magnetic trap, the particle will oscillate between two mirror points defined by
µB(sm) = E , as seen previously. Let’s call Tb the "bounce period" associated to this
motion. The associated adiabatic invariant is

I2 = 〈Ws(t)〉Ts = 1
2m〈v

2
‖〉Tb (5.46)

So if the bouce period of the particle is varying in time (on timescales much larger than
Tb), the parallel kinetic energy of the particle will vary as well. There are two main
reasons why it may occur :

— Perpendicular drifts may convect to shorter field lines (closer mirror points) :
then the Bounce period decreases and the mean kinetic energy of the particle
will increase. Of course the opposite reasoning applies if the particle drift toward
longer field lines.

— The magnetic field configuration may have some intrinsic time variation. For
example the magnetic bottle may contract on itself, and the particle will be
trapped between two approaching magnetic walls. It will as a consequence gain
energy : this phenomena is called the first-order Fermi acceleration, and can be
responsible for the production of cosmic rays of very high energies.

5.3.3 Third adiabatic invariant : enclosed magnetic flux

A third periodic motion may be identified in magnetic traps : once averaged over the
bounce motion, the particle may be seen as a "magnetic shell", consisting in the magnetic
flux tube bounded by its two mirror points. This magnetic shell moves perpendicularly
to the field lines under the effect of the perpendicular drifts. In the example of a particle
trapped in the Earth dipolar field, this motion will be azimuthal and associated to a
momentum pφ = mvφ + qAφ, where A is the field vector potential. Then

I3 =
∫ 2π

0
pφrdφ ' q

∮
A · d` = qΦB ∼ qπR2B0 (5.47)

51



M1 SUTS - Space Plasmas A. Zaslavsky

where ΦB is the total magnetic flux enclosed by the azimuthal motion of the particle
around the earth, and R the approximate radius of the particle’s orbit. Thus, if, for
some reason, the effective magnetic field B0 of the Earth increases, the particle orbit will
tend to diminish its radius to keep the enclosed flux constant. This invariant is not in
practice very useful, because events making the total magnetic field vary (e.g. magnetic
storms caused by the interaction of the magnetosphere with a coronal mass ejection) will
tend to occur on timescales that are of the order, or smaller, than the periodic motion
of particles around the Earth, and the adiabatic invariant is not conserved under these
non-adiabatic conditions.

5.4 Examples and exercises

5.4.1 The magnetic mirror term

Show that
〈v` × r` ·∇B(Rg)〉 = −µ

q
∇B (5.48)

5.4.2 Time invariance of the magnetic moment

We have shown the invariance of the magnetic moment µ along a particle trajectory
if the magnetic field is slowly varying in space. Let’s show that it is also invariant if B
is homogeneous but slowly varying in time.

If ∂tB 6= 0, there will be an electric field associated to this time variation, and a
change of the kinetic energy E⊥ of the particle due to the work of this electric force
along its cyclotron trajectory. Its small variation during a cyclotron cycle is

δE⊥ =
∮
qE · v⊥dt = −|q|

∮
E · d` = |q|

∫∫
∂B
∂t
· dS (5.49)

where we used the Stokes theorem and Faraday’s law to get the last part of the equality,
and oriented d` in the anti-clockwise direction, consistently with the Stokes law.

Now we assume that the magnetic field is slowly varying, that is, its variation on a
gyroperiod is a small quantity δB. Then to a good approximation, one has

δE⊥ = |q|δB
δt

∫∫
dS = qωcδB

2π πρ2 = E⊥
δB

B
(5.50)

from which we finally obtain that the small variation

δ

(
E⊥
B

)
= δµ = 0. (5.51)

The magnetic moment of the particle is, as a consequence, approximately invariant for
slow variations of the magnetic field.
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5.4.3 A curved field line in free space

We have investigated the effect of curvature of the magnetic field lines. But curvature
alone of the field lines is not permitted by Maxwell’s equation : a gradient of the field lines
must accompany this curvature ; as a consequence, a grad-B drift always accompanies a
curvature drift.

1. Consider a curved field line with curvature radius Rc. Calculate the perpendicular
gradient ∇B of field at a point on this field line.

2. Deduce the expression of the perpendicular drift of a particle moving along this
field line.
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