
Dynamics of charged particles in a magnetic field

Equation of motion of a particle of charge q and mass m

First we look at the most simple case : what if the magnetic field is constant (along the z axis) ?

Where 𝜔! is the cyclotron frequency (angular frequency, to be precise). Can be positive or negative depending
on the particle’s charge : positive ions rotate clockwise, and electrons anti-clockwise.

The trajectory in the perpendicular plane  is given by

Where we can introduce the Larmor radius 𝜌 = | "!
#"
|, which is the radius of the perpendicular trajectory.



Dynamics of charged particles in a magnetic field

Important scales/parameters for the motion of a particle in a magnetic field:

• Cyclotron frequency : 𝜔! = 𝑞𝐵/𝛾𝑚 (careful : it is a signed quantity)

• Larmor radius : 𝜌ℓ = 𝑣%/|𝜔!|

• Pitch-angle : cos 𝜃 = 𝑣∥/𝑣

• Gyrophase : 𝜙 𝑡 = 𝜙' + 𝜔!𝑡

• Guiding center position : 𝑹( 𝑡 = 𝒓 𝑡 − 𝒓ℓ(𝑡)



Pitch-angle

The motion parallel to the magnetic field is 𝑣) = 𝑐𝑜𝑛𝑠𝑡. and 𝑧 𝑡 = 𝑣)𝑡 + 𝑧'

Therefore the motion of the particle is an helix, with a pitch 𝑝 = 2𝜋𝑣)/𝜔!

We generally introduce the pitch-angle of the particle such that tan 𝜃 = "!
"#

= *+,
-

𝜃 = 10° 𝜃 = 45° 𝜃 = 80°



Diamagnetic behaviour of a plasma

One can remark that the current produced by the current
loop of a particle rotating in the magnetic field B produces
a small magnetic field that opposes B.

Modeling the particle as a small current loop of radius 𝜌,
one can associate to it a magnetic moment



Diamagnetic behaviour of a plasma

Reminding the Ampère’s law in a magnetized medium : 

∇×𝐁 = 𝜇I 𝑗JKL + ∇×𝐌 = ∇×(𝑩𝟎 + 𝜇I𝑴)

With the medium magnetization vector 𝐌 = 𝑛𝛍

So the magnetic field 𝐵 in the plasma checks

Where we summed the contribution on the electrons and ions in the calculation of 
the magnetization, assumed ions and electrons of equal temperatures. We also
assumed that 𝛽 ≪ 1. Conclusion: the thermal agitation decreases the effective value 
of the B field in the plasma.



Magnetization current

The plasma particles carry a current equal to 𝐣𝐩𝐥𝐚𝐬𝐦𝐚 = ∇×𝐌

And we have just seen that 𝐌 = − STUV
W!"

𝐁 and we know that

∇×𝜑𝑩 = ∇𝜑×𝐁

So there exist a current in the plasma if there is a gradient of 
the modulus of the magnetization vector,

𝑱𝑴 = −∇ $%&'
(!"

×𝐁

This is called the magnetization current. 
(careful : « collective current »)



Motion of a particle in a magnetic and a constant electric field

We decompose the motion into parallel and perpendicular components 

Along the perpendicular component, the particular solution of the equation is

The « cross-field drift »

Reminder: Galilean transform of the electric field

(it is always possible to find a frame where the perpendicular electric field
vanishes)



Motion of a particle in a magnetic and a constant force field

The same analysis applies, replacing E by F/q, so a perpendicular drift 
appears, 

Examples : gravitationnal drift and drifts arising from other inertial effects, 
like the curvature drift (cf. later)



The crossed field drift

• The particle starts at (0,0), assume the particle’s charge is positive.
• What is the direction of the magnetic field ? 
• Of the electric field ?
• Is it possible to know if the particle is an ion or an electron, from this trajectory only ?



Motion of a particle in a time varying electric field : resonance

In the plane perpendicular to the magnetic field, the equation of motion is

Where all variables are complex. The solution of this equation is

Resonant behaviour :

𝐸% = 𝐸' cos𝜔! 𝑡

The Larmor radius increases
linearly with time

(wave-particle interaction)



Perpendicular drifts, guiding center theory

We consider variations of the fields very small on the scale of the particle
gyroradius, and Taylor expand the field to first order. We get the equation
of motion :

In which we separated the guiding center motion from the fast cyclotron 
motion :

With < 𝒓ℓ(𝑡) > = 0 and < 𝒗ℓ(𝑡) > = 0



Order 0 : the field are like homogeneous…

Keeping the 0th order terms only, we get, after averaging on time,

So the motion of the guiding center just consists in the cross field drift 
calculated with the field at the position of the guiding center 

In the parallel direction, the motion is free from magnetic effect and 
consists in an acceleration in the given electric field. 

In the following we assume that there is no parallel electric field.



Order 1 : effect of the field gradients

Keeping the 1th order terms and averaging on time, we get

And the average

The acceleration of the guiding center can be decomposed in three terms :



The mirror force, and the conservation of 𝜇

Projecting the equation of motion along the parallel direction, we get

From which we demonstrate the the magnetic moment of the particle is a 
conserved quantity along the particle’s trajectory. Indeed,

And the kinetic energy of the particle is conserved (no work from the 
magnetic field).



Conservation of magnetic flux through the Larmor ”current ring”

We have seen that the magnetic moment is conserved along the motion of a particle. A consequence, the magnetic flux 
through a surface resting on the contour defined by the cyclotron motion is also conserved. This can be seen from the 
expression of this flux

This provides an easy and intuitive 
way to visualize the trajectory of 
particles in complicated (but slowly
varying) fields.



Mirror points

Because of the mirror force, the magnetic field modulus acts as a pseudo-potential for the motion of the particles along
the field lines

The particle is reflected at positions where 𝐵 𝑠. = 𝐸/𝜇. These are called the mirror points of the particle.



Magnetic bottle, mirror ratio

The mirror ratio R = Bmax / Bmin

Condition for escape :

Can be rewritten as a function of the pitch-angle of the particle at the position 
where B=Bmin :



Loss cone

Loss cone and time evolution related
to an electrostatic instability

Loss cone in the Jovian environment



Electron distribution observations

Jupiter’s auroral regions

Solar wind at
0.17 AU



Perpendicular drifts

Going back to our first order equation, but now taking the vector product by b, we get
the first order perpendicular motion of the guiding center

These three terms correspond to three types of perpendicular drifts

• The grad-B drift
• The curvature drift
• The polarization drift

• Note that the two last terms actually arise from inertial effects due to the 
acceleration of the guiding center at order 0. Also note that these drifts depend on 
the sign of the particle’s charge, and give rise to associated currents.



Grad-B drift

The grad-B drift is the perpendicular counterpart from the mirror force seen previously. 
Its expression is



Curvature drift

The curvature drift is due to the change of direction of the velocity of the particle with
time when the field line is curved. Considering the osculating circle at the position of 
the particle.

𝒃 𝑠 + Δs = R Δ𝜃 𝒃 𝑠 = 𝒃 𝑠 − sin Δ𝜃 𝒏

So that

𝑑𝒃
𝑑𝑠

= lim
[\→I

−sin
Δ𝜃
Δ𝑠
𝒏 = −

𝒏
𝑅^

We have 𝑑𝒃
𝑑𝑡

≃ 𝑣∥
𝑑𝒃
𝑑𝑠



Curvature drift

(is it an ion or an electron on the figure ?)



The polarization drift

The last term of the equation describes inertial effects due to the change in the cross 
field drift velocity. Considering only the change due to a time variation of the electric
field, we obtain the expression of the polarization drift 



The adiabatic invariants

The surface embedded by periodic phase-
space trajectories is conserved if the 
parameters defining the trajectory are slowly
varying in time (slow=compared to the 
oscillation period)

One can also show that



The first adiabatic invariant

The first, and fastest, periodic motion to be identified for a particle in a magnetic field is
the cyclotron motion. Applying the previous relation, we get

So the first adiabatic invariant is nothing but the magnetic moment of the particle, which is
conserved under slow time variations of the magnetic field.

This is used for particle’s acceleration in « betatron » devices.



The second adiabatic invariant

Consider the motion of a particle along a field line along which the modulus of the 
magnetic field varies. The particle will oscillate between its mirror points. This oscillatory
motion is certainly of much longer period than the cyclotron motion. 

If the parameters defining the field line are slowly varied in time (compared to the bounce
period), then



The third adiabatic invariant

The third adiabatic invariant arises when considering the bounce motion as a fast motion 
(the particle can then be viewed as a « magnetic shell », i.e. the flux tube bounded by the 
two mirror points).

The particle shell will in general rotate under the effect of magnetic drifts (examples of a 
mirror trap, or of the earth dipole).

The invariant is better expressed using the integral on particle’s generalized momentum



Triple periodicity of the motion in the Earth’s magnetic dipole


