Magnétostatique

Le « magnétisme » est d'abord associé à l'activité des aimants (un dipôle magnétique).

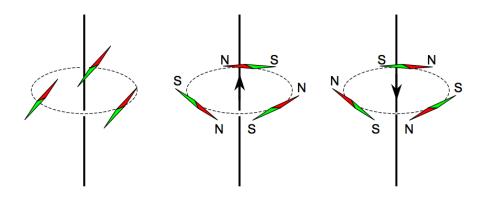
Ceux-ci sont connus depuis l'antiquité (Thalès 600 av JC)

Premières utilisations en temps qu'instrument de géolocalisation (boussole) : environ 1000 ap. JC.

Cuiller Si-Nan (dynastie Han, 250 av JC)

1820 : Expérience d'Oersted :

un fil parcouru par un courant électrique dévie une boussole!



La force de Lorentz

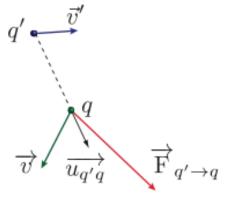
L'expression de la force de Coulomb pour des charges immobiles (statiques)

$$\overrightarrow{\mathbf{F}}_{q' \to q} = \frac{qq'}{4\pi\varepsilon_0 r^2} \overrightarrow{u_{q'q}}$$

doit être modifiée si les charges sont en mouvement les unes par rapport aux autres. Il faut en effet tenir compte du retard que met le champ à se propager de q' vers q lorsque q' se déplace, dans le cadre de la relativité restreinte.

On admettra ici que cette correction s'écrit :

$$\overrightarrow{\mathrm{F}}_{q' o q} = rac{qq'}{4\piarepsilon_0 r^2} \left[\overrightarrow{u_{q'q}} + rac{\overrightarrow{v}}{c} \wedge \left(rac{\overrightarrow{v}'}{c} \wedge \overrightarrow{u_{q'q}}
ight)
ight]$$



Le premier terme est le champ électrique « statique », le second terme, qu'on peut voir comme une correction relativiste à la force de Coulomb, décrit un nouvel effet. On écrit la force de Lorentz agissant sur la charge q :

$$\overrightarrow{\mathrm{F}}_{q} = q \left(\overrightarrow{\mathrm{E}} + \overrightarrow{v} \wedge \overrightarrow{\mathrm{B}} \right)$$

Où B est le champ magnétique crée par q'

Le champ magnétique

L'expression du champ magnétique crée par la charge ponctuelle q'animée d'une vitesse uniforme v' (petite devant celle de la lumière c) est donc

$$\overrightarrow{\mathbf{B}}(\mathbf{M}) = \frac{\mu_0}{4\pi} \frac{q'\overrightarrow{v}' \wedge \overrightarrow{\mathbf{PM}}}{\mathbf{PM}^3}$$

Où a introduit la perméabilité du vide μ_o telle que $|arepsilon_0 \mu_0 c^2 = 1|$

$$\varepsilon_0 \mu_0 c^2 = 1$$

 μ_0 est choisie, par définition de l'Ampère, égale à $~\mu_0=4\pi imes10^{-7}~{
m H.m^{-1}}$

L'unité du champ magnétique est le Tesla (symbole T)

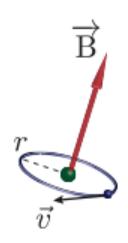
Ordres de grandeur macroscopiques :

Champ terrestre: environ 4.10⁻⁵ T / Aimant: 1-10 mT

Bobine supraconductrice: environ 10 T / Etoile à neutron: 108 T

Au niveau microscopique : champ crée par un électron tournant autour de son noyau ($v \approx 2.10^6$ m/s et r $\approx 5.10^{-11}$ m) au centre de l'orbite?

> \Rightarrow B = 12 T => les champ microscopiques ont tendance à s'annuler vectoriellement



La formule de Biot et Savard (1820)

On considère le champ magnétique élémentaire dB crée en un point M par un élément de charge élémentaire dq = ρ d τ situé au point P :

$$\overrightarrow{dB}(M) = \frac{\mu_0}{4\pi} \frac{\rho \overrightarrow{v} \wedge \overrightarrow{PM}}{PM^3} d\tau = \frac{\mu_0}{4\pi} \frac{\overrightarrow{J} \wedge \overrightarrow{PM}}{PM^3} d\tau$$

Le champ magnétique s'obtient en intégrant sur le volume parcouru par la densité de courant j :

$$\overrightarrow{\mathbf{B}}(\mathbf{M}) = \frac{\mu_0}{4\pi} \iint_{\mathbf{P}\epsilon\mathscr{V}} \frac{\overrightarrow{\jmath} \wedge \overrightarrow{\mathbf{PM}}}{\mathbf{PM}^3} d\tau$$

On est dans la plupart des cas amené à considérer que la densité volumique de courant j est limitée à un « fil ». On a dans ce cas

$$ec{j}dV=(ec{j}\cdotec{dS})ec{d\ell}$$
 (« circuit filaire »)

Et donc

$$\overrightarrow{ ext{dB}} = rac{\mu_0}{4\pi} \, rac{\overrightarrow{ ext{Id}\ell} \wedge \overrightarrow{ ext{PM}}}{ ext{PM}^3}$$
 Loi de Biot et Savard

Champ magnétique

Quelle est la direction du champ magnétique créé par la charge q > 0, au niveau du point M indiqué sur le schéma ci-dessous.

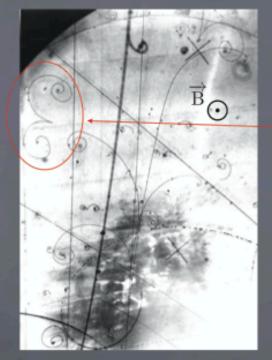
$$\overrightarrow{B}(M) = \frac{\mu_0}{4\pi} \frac{q \overrightarrow{v} \wedge \overrightarrow{PM}}{PM^3}$$

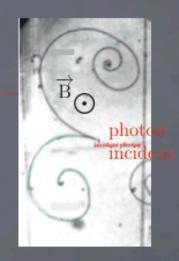
× M

- 1
- 2 🖌
- 4 8
- Aucune de ces réponses.

Force de Lorentz

Dans la figure ci-dessous, on voit les traces produites par des photons de hautes énergies qui se matérialisent en paires électron-positron (e^-e^+) , $\gamma \longrightarrow e^- + e^+$





Dans l'encart de droite, identifier la trajectoire de l'électron et celle du positron.

- Positrons vers le haut, électrons vers le bas.
- Electrons vers le haut, positrons vers le bas.
- Les électrons comme les positrons se répartissent sur les deux trajectoires, vers le haut et vers le bas.

Champ magnétique

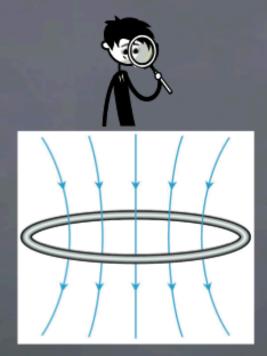
Quelle est la direction du champ magnétique créé par le fil (I > 0), au niveau du point M indiqué sur le schéma ci-dessous.



- **1** →
- **3** ①
- ₄ ⊗
- 5 Aucune de ces réponses.

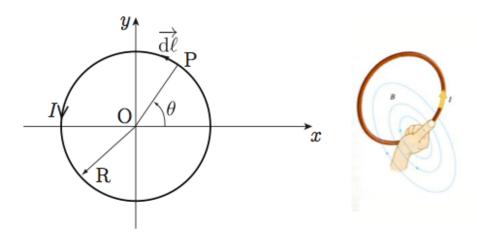
Champ magnétique

Un courant créé les lignes de champ magnétique de la figure ci-dessous. Si on regarde la spire d'en haut, dans quel sens circule le courant dans la spire?



- Dans le sens des aiguilles d'une montre.
- Dans le sens inverse des aiguilles d'une montre

Calcul de champ magnétique : centre d'une spire



On cherche le champ au centre de la spire

Biot et Savard :
$$\overrightarrow{B}(O) = \frac{\mu_0}{4\pi} \oint_{\mathscr{C}} \frac{\overrightarrow{Id\ell} \wedge \overrightarrow{PO}}{PO^3}$$

On se place en coordonnées polaires (cylindriques de même axe que celui de la spire, mais ici on n'utilisera pas z...)

$$\overrightarrow{d\ell} = Rd\theta \overrightarrow{e_{\theta}} \text{ et } \overrightarrow{PO} = -R\overrightarrow{e_r}, \text{ donc } \overrightarrow{d\ell} \wedge \overrightarrow{PO} = R^2d\theta \overrightarrow{e_z}.$$

Et donc
$$\overrightarrow{B}(O) = \frac{\mu_0 I}{2R} \overrightarrow{e_z}$$

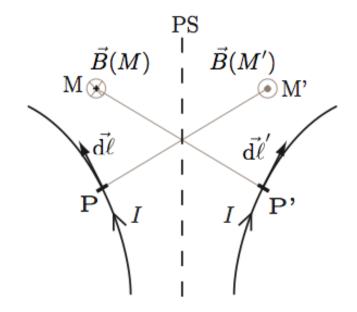
Règles de symétrie du champ magnétique

B est un champ « pseudo-vectoriel », on parle aussi de vecteur axial. C'est à dire qu'il est défini par un produit vectoriel des termes sources.

$$\operatorname{sym}\ (\overrightarrow{\operatorname{d}\ell} \wedge \overrightarrow{\operatorname{PM}}) = -(\operatorname{sym}\ \overrightarrow{\operatorname{d}\ell}) \wedge (\operatorname{sym}\ \overrightarrow{\operatorname{PM}})$$

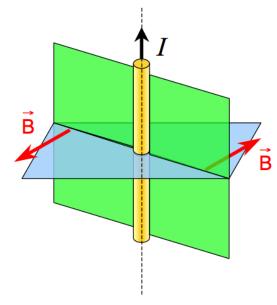
Un plan de symétrie de la distribution de courant j est donc un plan d'antisymétrie du champ B

 $PS : \overrightarrow{B}(sym M) = -sym \overrightarrow{B}(M)$ $PA : \overrightarrow{B}(sym M) = sym \overrightarrow{B}(M)$



- i) Si M appartient à un plan de symétrie de la distribution de courant (noté PS), alors $\overrightarrow{B}(M)$ est perpendiculaire à ce plan. On dit souvent que \overrightarrow{B} est perpendiculaire à ses plans de symétrie.
- ii) Si M appartient à un plan d'anti-symétrie de la distribution de courant (noté PA), alors $\overrightarrow{B}(M)$ appartient à ce plan. On dit souvent que \overrightarrow{B} appartient à ses plans d'antisymétrie.

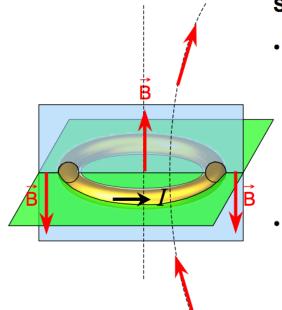
Règles de symétrie du champ magnétique



Fil rectiligne

- Tout plan passant par l'axe est plan de symétrie
- Tout plan perpendiculaire à l'axe est plan d'antisymétrie

$$\vec{v} /\!\!/ \vec{e}_z, \vec{r} /\!\!/ \vec{e}_z \Rightarrow \vec{B} /\!\!/ \vec{e}_{\phi}$$

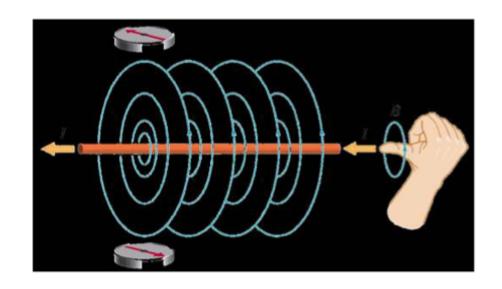


Spire circulaire

 Tout plan passant par l'axe de la spire est plan d'antisymétrie

 Le plan perpendiculaire à l'axe de la spire est plan de symétrie

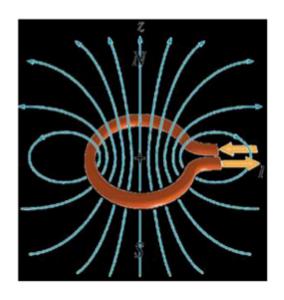
Exemples de lignes de champ magnétique



(crédit Hecht)

Fil rectiligne

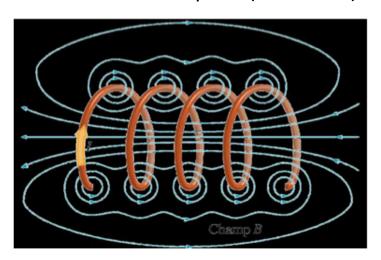


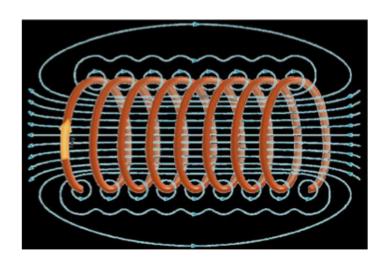


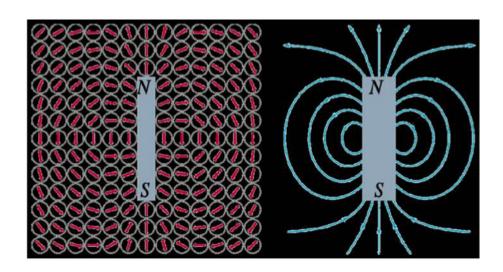
Spire

Exemples de lignes de champ magnétique

Associations de spires (solénoide) :

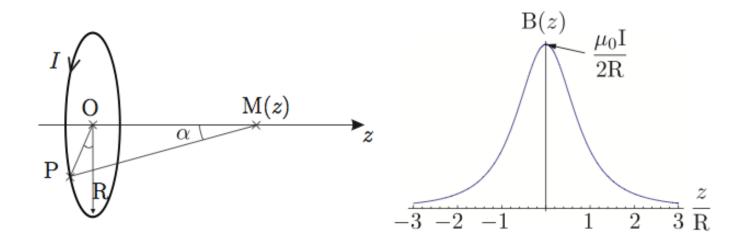






Aimant (dipôle magnétique)

Calcul de champ magnétique : axe d'une spire (fait en TD8)



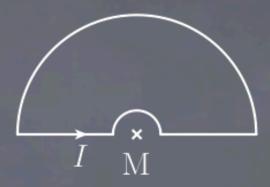
On se place en coordonnées cylindriques de même axe que celui de la spire, on obtient

$$\overrightarrow{\mathrm{B}}(\mathrm{M}) = rac{\mu_0 \mathrm{I}}{2} rac{\mathrm{R}^2}{\left(z^2 + \mathrm{R}^2\right)^{3/2}} \overrightarrow{e_z}$$

(Où on a utilisé le fait que
$$\int_0^{2\pi} ec{e_{
ho}}(\phi) d\phi = 0$$
)

Champ magnétique

On note R_1 et R_2 ($R_1 < R_2$) les rayons des demi-cercles. Quelle est la norme du champ magnétique au point M?



$$\frac{\mu_0 I}{4(R_1 + R_2)}$$

$$2 \frac{\mu_0 I}{4} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

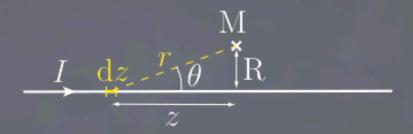
$$\frac{\mu_0 I}{4(R_2 - R_1)}$$

$$\frac{\mu_0 I}{4} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Mucune de ces réponses.

Biot et Savart

Quelle intégrale représente l'amplitude du champ magnétique total au point M ?



$$B(M) = \frac{\mu_0}{4\pi} IR \int_{-\infty}^{\infty} \frac{dz}{(z^2 + R^2)^{3/2}}$$

$$B(M) = \frac{\mu_0}{4\pi} I \int_{-\infty}^{\infty} \frac{dz}{(z^2 + R^2)}$$

$$B(M) = \frac{\mu_0}{4\pi} I \int_{-\infty}^{\infty} \frac{r dz}{(z^2 + r^2)^{3/2}}$$

$$B(M) = \frac{\mu_0}{4\pi} IR \int_{-\infty}^{0} \frac{dz}{(z^2 + R^2)^{3/2}}$$

6 Aucune de ces réponses

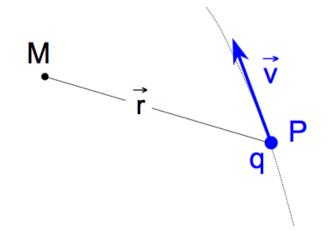
Non-divergence de B (Maxwell-Thomson)

Le champ magnétique crée en un point M quelconque vaut

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \wedge \vec{u_r}}{r^2}$$

Calculons sa divergence en utilisant la relation :

$$\operatorname{div} \vec{A} \wedge \vec{B} = \vec{B} \cdot \operatorname{rot} \vec{A} - \vec{A} \cdot \operatorname{rot} \vec{B}$$



Le rotationnel de v est nul, celui de e_r/r² l'est aussi

(expression du rotationnel en sphérique :

$$\overrightarrow{rot} \, \overrightarrow{a} = \frac{1}{r \sin \theta} \left(\frac{\partial \left(a_{\varphi} \sin \theta \right)}{\partial \theta} - \frac{\partial a_{\theta}}{\partial \phi} \right) \overrightarrow{e}_{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial a_{r}}{\partial \phi} - \frac{\partial \left(r a_{\varphi} \right)}{\partial r} \right) \overrightarrow{e}_{\theta} + \frac{1}{r} \left(\frac{\partial \left(r a_{\theta} \right)}{\partial r} - \frac{\partial a_{r}}{\partial \theta} \right) \overrightarrow{e}_{\varphi}$$

On en déduit ce résultat général et extrêmement important :

$$\overrightarrow{div} \ \overrightarrow{B} = \overrightarrow{0}$$
 ou encore $\cancel{D} \overrightarrow{B} \cdot \overrightarrow{dS} = 0$ Le flux de B à travers toute surface fermée est nul

$$\oint \overrightarrow{B} \cdot \overrightarrow{dS} = 0$$

Potentiel vecteur & notion de jauge

On vient de voir que la divergence de B est toujours nulle. On peut donc, sans perdre en généralité, écrire B comme le rotationnel d'un champ de vecteur A (puisque la divergence d'un rotationnel est toujours nulle)

$$\vec{B} = \overrightarrow{\operatorname{rot}} \vec{A}$$
,

A est appelé potentiel vecteur du champ magnétique. Tout comme le champ E dérivait dans le cas statique d'un potentiel scalaire V, le champ magnétique dérive d'un potentiel, mais qui a une forme vectorielle et non scalaire.

Le rotationnel du gradient d'une fonction scalaire quelconque ψ étant nul, A est en fait défini au gradient d'une fonction quelconque près (c'est à dire qu'ajouter grad(ψ) à A ne changera pas B, qui est l'observable physique, via la force de Lorentz).

Le choix de la fonction ψ constitue le choix de Jauge du champ.

Lien entre potentiel vecteur et sources (démonstration hors programme)

On a vu que B est lié aux sources de courant par :

$$\overrightarrow{\mathbf{B}}(\mathbf{M}) = \frac{\mu_0}{4\pi} \iint_{\mathbf{P}\epsilon\mathscr{V}} \frac{\overrightarrow{\jmath} \wedge \overrightarrow{\mathbf{PM}}}{\mathbf{PM}^3} \, \overrightarrow{\mathbf{Q}} \, \mathcal{T}$$

On introduit le gradient de PM⁻¹ : $\frac{P \vec{M}}{PM^3} = -\nabla \left(\frac{1}{PM}\right)$

Nous permet d'exprimer B sous la forme d'un rotationnel, avec l'identité :

$$\nabla \wedge (f\vec{A}) = \nabla(f) \wedge \vec{A} + f\nabla \wedge \vec{A} \qquad \Longrightarrow \qquad \vec{B} = \frac{\mu_0}{4\pi} \nabla \wedge \iiint \frac{\vec{j}(P)}{PM} d\tau$$

Où l'opérateur nabla s'applique aux coordonnées du point M et non P (d'où rot_M j(P) = 0)

Et donc d'exprimer A : (où ψ dépend du choix de jauge, grad ψ =0 dans la jauge de Coulomb) :

$$\vec{A}(M) = \frac{\mu_0}{4\pi} \iiint \frac{\vec{j}(P)}{PM} d\tau + \vec{\text{grad}}\psi$$

Equation de Maxwell-Ampère

On peut calculer le rotationnel de B à partir de la formule de Biot et Savard (en forme volumique et pas linéique), ce calcul est un peu technique et n'est pas fait dans ce cours :

$$\vec{\mathrm{rot}}\vec{B} = \mu_0 \vec{j} + \left(\text{terme } \propto \text{div}\vec{j} \right)$$

Donc en régime permanent (d/dt = 0), ce rotationnel se réduit à (cf conserv. charge)

$$\overrightarrow{rot} \overrightarrow{B} = \mu_0 \overrightarrow{\jmath}$$

Il s'agit de l'équation de Maxwell-Ampère. Sous cette forme partielle, elle n'est valable que dans l'hypothèse de courant constant dans le temps (ou tout du moins *lentement variables*)

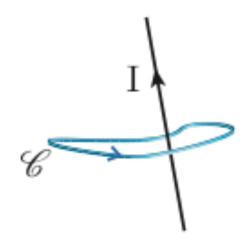
Nous complèterons dans le dernier chapitre cette équation par un terme dit « courant de déplacement » pour des variations plus rapides.

Théorème d'Ampère

Le théorème de Stokes nous permet de déduire que la circulation du champ magnétique le long de tout contour fermé C est égale au produit de la perméabilité du vide par le courant traversant toute surface S s'appuyant sur le contour fermé C.

$$\oint_{\mathcal{C}} \vec{B} \cdot \vec{d\ell} = \mu_0 \iint_{\mathcal{S}} \vec{j} \cdot \vec{dS}$$

L'orientation de la surface S et du contour C doit alors être faite de manière cohérente.



On écrit généralement le théorème sous la forme suivante :

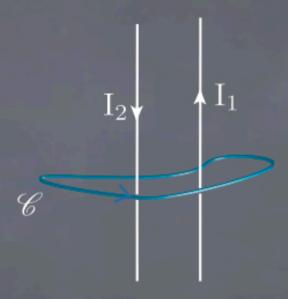
$$\oint_{\mathscr{C}} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d}\ell} = \mu_0 \mathrm{I}_{\mathrm{enlac\'e}}$$

Le courant est compté algébriquement en tenant compte de la règle d'Ampère.

Application du théorème : calcul du champ créé par un fil infini ?

Théorème d'Ampère

On considère le contour d'Ampère & ci-dessous.

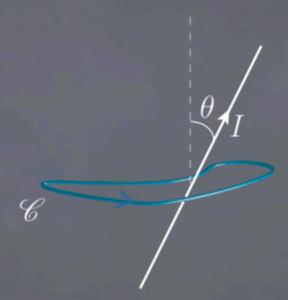


Que vaut la circulation du champ magnétique sur ce contour?

- $\mu_0 I_1$
- $\mu_0 I_2$
- $\mu_0(I_1-I_2)$
- $\mu_0(I_1+I_2)$
- Zéro.

Théorème d'Ampère

On considère le contour d'Ampère \mathscr{C} ci-dessous. Le fil parcouru par un courant I fait un angle θ avec le plan du contour d'Ampère.

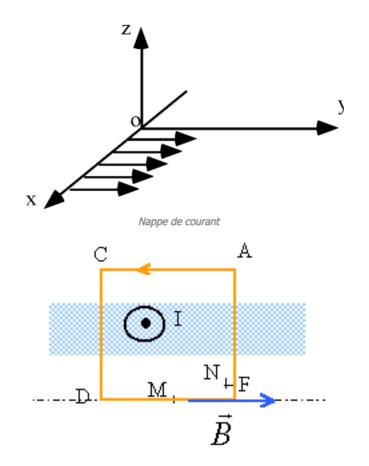


Que vaut la circulation du champ magnétique sur ce contour?

- $\mu_0 I$
- $\mu_0 I \sin \theta$
- $\mu_0 I \cos \theta$
- $\mu_0 I \tan \theta$
- $= \mu_0 I$

Discontinuité de B à la traversée d'une nappe de courant

Le plan xOy est parcouru par une nappe de courant surfacique j_s



Symétries et invariances :

$$\vec{B} = B(z)\vec{e_x}$$
 et $B(-z) = -B(z)$

Intégrale du champ sur le contour ABCD :

$$\oint \vec{B} \cdot \vec{d\ell} = 2B(z)\ell$$

Courant enlacé dans le contour ABCD $~I=j_s\ell$

Donc
$$B(z) = \frac{\mu_0 j_s}{2}$$

On a donc une discontinuité de la composante tangentielle du champ à la traversée de la nappe

Résultat généralisable à toute surface : $\ \vec{B}_2 - \vec{B}_1 = \mu_0 \vec{j_s} \wedge \vec{n}_{12}$