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1 Formation and structure of the ionosphere

In this section, we are interested in how the absorption of solar UV radiation leads to
the formation of an ionised layer in the upper atmosphere. Let us begin by writing the
equation of conservation of the number of electrons,

∂ne

∂t
+ div(neue) = qe − le. (1)

On the right-hand side, it shows a source term qe and a loss term le which describe the
production and loss of free electrons in the plasma. These are local terms, which are
related to chemical (and photochemical) reactions in the plasma. The term div(neue)
describes the effect of the movement of the electron fluid. This equation therefore allows
us to identify the two effects that structure the ionosphere : chemical effects (which are
dominant in the lower layers of the ionosphere, where the mean free path of particles is
small compared to all other spatial scales), and transport effects (which are dominant at
altitudes above approximately 300 km). In this section, we will focus on the former, and
in the next section on the latter.

1.1 Photoionisation of the atmosphere

Photoionisation is the dominant process for electron production in the upper atmos-
phere, particularly at low latitudes (equatorial region). It is therefore the process we will
study in this section, using a simplified model. However, it should be noted that other
processes are involved and can have a significant impact on the observed plasma densities.
The impact of energetic particles in particular, via the secondary emission mechanism,
can play a role at high latitudes, close to the polar cones connected to the magnetos-
phere. The impacts of small solid bodies (meteors or shooting stars) also play a role in
creating sporadic ionisation layers. At lower altitudes (∼ 80 km), where solar ionising
radiation has been almost completely absorbed, other sporadic phenomena (cosmic rays,
solar X-ray bursts) can significantly alter the observed ionisation rates. The ionisation of
the upper atmosphere is therefore the result of a variety of processes, but we will only
study the main one here.

1.1.1 Zenith angle

To understand the distribution of ionisation zones, it is important to have an idea
of the geometry of the Earth-Sun system, and in particular to introduce the concept of
zenith angle.

A ray from the Sun reaches the Earth at an angle χ to the normal to the Earth’s
surface, where χ is the so-called zenith angle, which varies with the season and, of course,
with the Earth’s latitude and longitude (or rather the hour angle, or local time). Figure
1 shows the geometry of the system. In this figure, δ is the solar declination, i.e. the
angle between the incident rays and the Earth’s equator. This angle depends on the day
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Figure 1 – Zenith angle between the direction of the sun’s rays and the local vertical.

of the year, its minimum value being δ = 0 at the equinoxes and its maximum value
δ = ±23.44◦ at the solstices.

The unit vector uray along a solar ray can be expressed in the Cartesian coordinate
system of Figure 1 as : uray = (0,− cos δ,− sin δ). The zenith angle is therefore such that

cosχ = −uray · n (2)

where n is the normal vector to the surface of the sphere at point M(θ, ϕ) where we are
seeking to calculate χ. This normal vector has coordinates in the Cartesian coordinate
system n = (sin θ cosϕ, sin θ sinϕ, cos θ). We can deduce the expression of χ as a function
of the coordinates (θ, ϕ) :

cosχ = sin δ cos θ + cos δ sin θ sinϕ. (3)

We often express χ in terms of the latitude θlat = π
2 − θ and the local hour angle

counted from midnight H = ϕ+ π
2 . In terms of these angles, we have

cosχ = sin δ sin θlat − cos δ cos θlat cosH. (4)

Figure 2 shows the distribution of the value of cosχ on the Earth’s sphere. We can
see that the rays are more grazing at high latitudes and in the morning and evening, ob-
viously. This figure reproduces fairly well the distribution of the ionisation level observed
in the upper atmosphere, which, as we shall see, is proportional to cosχ.

3



M2 PPF - O3 - Terrestrial ionosphere

Figure 2 – Cosine of the zenith angle χ calculated at different points on the Earth’s sphere
during the summer solstice (δ = 23.44◦, left) and an equinox (δ = 0, right)

Figure 3 – TEC (total electron content) of the ionosphere in a longitude-latitude projection.
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1.1.2 Optical thickness of the atmosphere

Consider the interaction of a solar ray with the Earth’s atmosphere. As we have just
seen, the ray arrives on Earth at an angle of incidence χ relative to the normal. We
consider the solar ray to be monochromatic, characterised by a photon flux density Nν

[m−2.s−1], and that the atmosphere is composed of a single atomic or molecular species,
with density nn(z) (the index n referring to the density of neutrals, to avoid confusion
later with the density of the plasma).

If the energy hν of the photon is greater than the ionisation energy of the atom
W ∼ 10 eV, i.e. if its wavelength is smaller than λ < hc/W ∼ 100 nm (we are therefore
in the UV range), it will have a non-negligible probability of ionising the atom or molecule
in question. This probability is characterised by a cross section, known as the photoioni-
sation cross section, σph, which is a chemical property of the atom or molecule in question.

Figure 4 – Angle of incidence and relationship between ds and dz.

The probability that a photon will be absorbed when travelling a certain distance ds
is (by definition of σph) : dp = σphnnds = ds/λph. Where we can define λph = 1/(σnn)
as the mean free path of the photon in the atmosphere.

The evolution of the photon current density is therefore given by

Nν(s+ ds) = Nν(s) (1− dp(s)) = Nν(s) (1− σphnnds) (5)

This can be rewritten in the form of a differential equation (remember that dz =
−ds cosχ, see fig.4) :

dNν

dz
=

σphnn(z)

cosχ
Nν(z). (6)

which can be integrated as follows :

Nν(z) = Nν(∞) exp

(
−

σph
cosχ

∫ ∞

z
nn(z)dz

)
(7)
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where Nν(∞) is the photon current density at infinity, before any interaction with the
atmosphere (which is therefore a property of the light source, in this case the Sun).

The argument of the exponential in equation (7) is called the optical thickness τ(z)
of the atmosphere at altitude z.

Nν(z) = Nν(∞)e−τ(z), τ(z) =
σph
cosχ

∫ ∞

z
nn(z)dz (8)

The optical thickness τ(z) is a function of the wavelength of the incident radiation via
σph and, of course, the density of the atmosphere. τ(z) = 1 gives the altitude at which
the energy of the incident radiation has been divided by e.

The optical thickness of the entire atmosphere is by definition τ(0), if we place the
origin of the z axis at the Earth’s surface. It is a quantity that measures the transparency
of the atmosphere at different wavelengths. Typically, τ(0) ≪ 1 in the visible wavelengths,
while τ(0) ≫ 1 in the UV.

1.1.3 Photoelectron production rate

To obtain the electron production rate per unit volume qe, we can now assume that
the number of electrons dne produced (per unit area) between s and s+ds is proportional
to the number of photons absorbed (per unit area) between s and s+ds, i.e. to −dNν . We
therefore have dne = −ηdNν , where η is the average number of photoelectrons produced
per absorbed photon. According to (6), we then have

qe =
dne

ds
= −η

dNν

ds
= ησphnn(z)Nν(z) (9)

1.1.4 Case of an isothermal atmosphere

In the case of an isothermal atmosphere of temperature T , composed of a single
species of atomic or molecular mass m, the density profile n(z) is simply given by

nn(z) = n0 exp
(
− z

H

)
, where H =

kT

mg
(10)

The optical thickness (8) can then be calculated simply, giving

τ(z) =
σphn0H

cosχ
exp

(
− z

H

)
= τ(0) exp

(
− z

H

)
(11)

and therefore, according to (9)

qe = ησphn0Nν(∞) exp
(
− z

H
− τ(0) exp− z

H

)
. (12)

This is commonly referred to as the Chapman production function, named after Sydney
Chapman, a pioneer in space plasma research (among other fields), who published this
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result in 1930.

Note that we have calculated the production rate here assuming that the neutral den-
sity remains given by (10), which implies that our model is only valid if the ionospheric
electron density is low compared to the neutral density : ne ≪ nn at all altitudes. If this
condition is not met, a self-consistent model must be constructed in which nn(z) is itself
a function of the production rate, but we will avoid this complication here.

The altitude zm at which the ionisation rate is maximum can be easily found by
taking the logarithmic derivative of (9) or (12),

zm = H ln τ(0) = H ln
σphHn0

cosχ
(13)

where we can note that zm corresponds to the height at which the optical depth is equal
to 1 : τ(zm) = 1, i.e. the height at which the incident radiation is divided by e relative
to its value at infinity. The maximum production rate qem is

qem = qe(zm) =
ηNν(∞) cosχ

exp(1)H
. (14)

By introducing y = (z − zm)/H, we can rewrite the production function in a more
compact form, which is often found in the literature :

qe = qem exp (1− y − exp(−y)) (15)

1.2 Recombination processes

Now that we have quantified the electron creation rate, we need to evaluate the
lifetime that a free electron can have before being recaptured by an ion, and which
determines the loss term le in eq.(1). To do this we need to identify the dominant processes
through which ions and electrons recombine.

1.2.1 Radiative recombination

Radiative recombination is the reverse reaction of photoionisation :

X + hν ⇄ X+ + e− (16)

The reaction cross section is σph (the photoionisation cross section mentioned in the pre-
vious section), taken in the left-to-right direction, and σrad, the radiative recombination
cross section, taken in the right-to-left direction.
The value of these cross sections obviously depends on the chemical nature of the com-
pound X. The expressions for the cross sections are of the order of

σph ∼ 10−22 m2, σrad ∼ 10−24 m2 (17)

We can therefore see that the reaction is very unbalanced in the right-to-left direction.
Radiative recombination is an inefficient process.
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1.2.2 Dissociative recombination

In the presence of diatomic molecules, a more efficient recombination process exists,

XY + + e− → X∗ + Y ∗ (18)

whose cross section is given by
σdis ∼ 10−18 m2, (19)

i.e. a factor of 106 above σrad. It is therefore by far the dominant process in the presence
of diatomic molecules, particularly in the lower layers of the atmosphere, via reactions
on oxygen and nitrogen. It should be noted that energy conservation in this process
generally leaves the atoms in an excited state. They de-excite by emitting photons, which
are responsible for part of the phenomenon known as "airglow", limiting ground-based
astronomical observations in the visible range.

1.2.3 Evaluation of electron density

We can now evaluate the electron density profile in the ionosphere using the conti-
nuity equation (1). To do this, we assume a static ionosphere (∂/∂t = 0) and neglect
transport phenomena : ue = 0. The density is therefore given by the equality of the
source and loss terms.

The temporal evolution of the electron concentration during a chemical recombination
reaction of the type A+ + e− → A, characterised by a cross section σrec, is given by

dne

dt
= −le = −σrecvthenenA+ (20)

where vthe is the thermal velocity of electrons, which is much higher than that of the ionic
species. If we assume, as we have done so far, that the atmosphere consists of a single
species, and that this species is ionised only once (which is reasonable if we assume that
the electron density is very low compared to the neutral density ne ≪ n, an assumption
already made to obtain the production rate in the previous section), then nA+ = ne, and
the loss rate is proportional to the square of the electron density

le = σrecvthen
2
e (21)

The electron density profile is then given by

ne(z) =

√
qe(z)

σrecvthe
(22)
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1.3 Illustrations of the ionospheric structure

1.3.1 Isothermal model

To illustrate the results obtained, we consider a neutral atmosphere characterised by
the following parameters : 

m = mN2 ≃ 2.3× 10−26 kg
T = 300K

p0 = 1 bar
(23)

These parameters correspond to a height scale H ≃ 9 km and a ground density n0 =
p0/kT ≃ 2.4× 1025 m−3.

The density of ionising photons, i.e. in the UV range that interests us (λ < 100nm),
arriving from the Sun at 1 AU is of the order of

N(∞) ≃ 5× 1014 m−2s−1 (24)

and we will take an ionisation number per photon η = 1. For the photoionisation/recombination
cross sections, we take the values of σph and σdis given in order of magnitude in the pre-
vious paragraph (dissociative recombination).

Figure 5 – Chapman layer for the N2 atmosphere at 300 K described in the text. Left :
Production rate (solid line) and photon current density (dotted line). Right : Neutral density
(dotted line) and electron density (solid line).
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The left part of Figure 6 shows the normalised values of the UV photon flux density
and the production function qe. The atmosphere at high altitudes is too sparse, and the-
refore too transparent, for the photoionisation process to be effective. Once they reach
the denser layers, the photons are quickly absorbed, producing electrons locally. The
production function therefore takes on non-negligible values in a layer around zm, known
as the Chapman layer.

The right-hand side of Figure 6 shows the values of the neutral density (dotted line)
and electron density (solid line). Here again, we see the layered structure. It can be
noted that while our model gives good results around the ionisation maximum, it no
longer works at high altitudes (>350 km approximately), since the assumption ne ≪ nn

is no longer valid there. At these altitudes, the plasma is highly ionised, the atmosphere
is very sparse, and other effects (in particular diffusive transport) that are neglected here
must be taken into account when modelling the plasma.

1.3.2 The layers of the Earth’s ionosphere

Figure 6 – Composition of the neutral atmosphere and ionosphere as a function of altitude.
Measurements from sounding rockets (daytime, White Sands, New Mexico) for altitudes below
250 km. Measurements from the Elektron II satellite above 250 km.

In this section, in order to understand and model the process of ionosphere gene-
ration, we have considered the simple model of an atmosphere with a single chemical
component ionised by monochromatic radiation. The reality is obviously more complex,
as the atmosphere is composed of multiple chemical species, each characterised by an
ionisation cross section acting at different wavelengths. All these effects are modelled
using numerical models.

However, it is understandable that, since the scale height H is a function of particle
mass, the heaviest molecules will be found at the lowest altitudes. And the higher the
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altitude, the greater the proportion of light molecules and atoms. Gravity therefore pro-
duces a stratification of chemical elements, which has an effect on the structure of the
ionosphere.

The ionospheric layers are designated by letters and, from bottom to top, are charac-
terised by :

— Layer D (altitude 70-90 km) : mainly composed of NO+ and O+
2 , present only

during the day, its ionisation rate is a fairly important function of solar activity
(production by hard solar X-ray bursts).

— E layer (peak density altitude around 110 km) : O+
2 is predominant, its density

drops just after sunset to its "night-time" equilibrium value. This layer therefore
remains present at night. Produced mainly by the absorption of the UV conti-
nuum, as well as by hydrogen lines (Lyman beta) and X-rays.

— Layer F1 (around 200 km), O+ predominant, disappears completely during the
night. Produced mainly by the absorption of the UV continuum (10-80 nm), as
well as He II lines.

— Layer F2 (around 300 km), O+, N+ persists during the night. Produced mainly
by the absorption of the UV continuum (10-80 nm), as well as He II lines.

2 Transport phenomena

In the previous section, we focused on chemical reactions, which are local in nature,
neglecting the term for electron (or ion) transport. In this section, we will focus on the
latter.

2.1 Mobility and diffusion in a magnetised plasma

Here we will study the response of a partially ionised plasma to the application of
constant external forces. We denote by νi,e the collision frequencies between ions and
neutrals (index i) or between electrons and neutrals (index e). These collision frequencies
are given by

να = nnσcvthα (25)

where nn is the neutral density, σc is the cross section for collisions with neutrals (of the
same order of magnitude for ions and electrons) and vthα = (kTα/mα)

1/2 is the thermal
velocity.
To keep the problem reasonably simple, we will consider the collision frequencies between
ions and electrons to be negligible, the temperatures to be constant (independent of
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Figure 7 – Electron density at mid-latitudes as a function of altitude, showing the layered
structure, its variability between day and night, and with the solar cycle.

position), and the plasma to consist of a single atomic or molecular species, ionised only
once. The fundamental equation of dynamics is written as

0 = nαmαg − kTα∇nα + nαqα(E + uα × B)− nαmανα(uα − U) (26)

where α = i, e. g is the acceleration due to gravity, E is the electric field, B is the ma-
gnetic field, and U represents a possible velocity relative to the observation reference
frame (generally linked to the Earth’s surface). This velocity can play an essential role
in ionospheric electrodynamic phenomena, which are often generated by neutral winds,
whose velocities are significant (> 100 m/s) in the thermosphere.

In this equation, we have neglected the inertial term u · ∇u as compared to the
viscosity term νu. This is possible for a subsonic and collisional fluid (low Knudsen
number). Indeed, we can see that (introducing L as the typical spatial dimension of the
system)

|u · ∇u|
|νu|

∼ u

νL
∼ u/vth

L/ℓlpm
∼ MaKn (27)

where Ma is the Mach number and Kn is the Knudsen number.

In order to simplify and eliminate the explicit dependence on U, we reformulate the
equation of dynamics in the reference frame in which the neutrals are at rest :

0 = nαmαg − kTα∇nα + nαqα(E’ + u’α × B)− nαmαναu’α (28)

12
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where u’α = uα−U and E’ = E+U×B, for a non-relativistic change of reference frame.

We can express the velocity u’α :

u’α − καu’α × b = µα(mαg + qαE’)−Dα
∇nα

nα
= wα (29)

Where we have introduced the mobility coefficients of species α : µα = 1/(mανα)
and the diffusion coefficient Dα = kTα/(mανα) = kTαµα. κα = qαB/(mανα) is the ratio
of the cyclotron frequency of population α to its collision frequency with neutrals (note
that κe < 0 with this definition). wα is the velocity that population α would have in the
absence of a magnetic field.

Equation (29) allows us to discuss the limiting cases of a weak field κα ≪ 1 and a
strong field κα ≫ 1.

In the first case, κα ≪ 1, we see that u’α ≃ wα, so everything behaves as if there
were no magnetic field : charged particles move through a population of neutral particles
with which they collide : apart from the diffusion effect, their average velocity is therefore
proportional to the forces applied (Ohm’s effect or similar), the work done by the forces
that cause them to move being transmitted to the neutral particles in the form of heat
(Joule effect or similar).

In the second case, κα ≫ 1, we then have καu’α × b ≃ −wα, and therefore

u’⊥α ≃ wα

κα
× b ≃ 1

qαB2
(mαg + qαE’ − kTα

∇nα

nα
)× B = Vg + V× + Vdm. (30)

where u’⊥α is the perpendicular component of the velocity of population α, u’⊥α ≡
u’α − (u’α · b)b. The component of the velocity parallel to the magnetic field is, of
course, the solution to the "no magnetic field" equation discussed above.

Since collisions occur very slowly compared to the cyclotron frequency, we find ma-
gnetic drift motions perpendicular to both the applied force and the magnetic field. The
three terms on the right-hand side are, in order of appearance : the gravitational drift
velocity, the cross-field drift velocity, and the diamagnetic drift velocity.

What happens in an intermediate case ? We can imagine that the velocity of the
particles will then have two components : an "Ohmic" component parallel to the applied
forces and a "magnetic drift" component perpendicular to both these forces and the ma-
gnetic field.
To answer this question, we can solve equation (29), for example by reformulating it as
an algebraic system (we temporarily omit the indices α) :

u′x − κu′y = wx

κu′x + u′y = wy

u′z = wz

(31)
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Figure 8 – Schematic particle trajectories for the limiting cases κ ≪ 1, κ ≫ 1, κ ∼ 1. Only
the electric force is taken into account in this figure.

Where we have taken the z axis of our coordinate system parallel to the magnetic field.
The system is written in matrix form w = A · u’, and is solved by inverting the matrix
A : u′x

u′y
u′z

 =


1

1+κ2
κ

1+κ2 0

− κ
1+κ2

1
1+κ2 0

0 0 1


wx

wy

wz

 (32)

We can therefore see that the mobility and diffusion coefficients take different values
depending on the direction considered. In the direction of the magnetic field, they remain
unchanged, and we have

u′αz = µα(mαgz + qαE
′
z)−

Dα

nα

dnα

dz
(33)

In the plane perpendicular to the magnetic field, we must separate the direction of
the forces (or density gradient), along which we have a mobility, or effective diffusion
coefficient, equal to

µPα =
µα

1 + κ2α
DPα = kTαµPα =

Dα

1 + κ2α
(34)

and the direction perpendicular to both the forces and the magnetic field, along which
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there is mobility or an effective diffusion coefficient equal to

µHα =
καµα

1 + κ2α
DHα = kTαµHα =

καDα

1 + κ2α
. (35)

The indices P and H refer to Pedersen and Hall.

2.1.1 Expression of the conductivity

We discussed the general case of mobilities in the previous section, but it is interesting
to look at the special case of the electric field, which is often the dominant term.

The conductivity σ of the plasma is defined by j = σ · E, where j = e(niui − neue),
if we consider that the ionic species is simply ionised. To simplify the expressions, we
assume in what follows that the plasma is quasi-neutral, i.e. that ne = ni = n. The
conductivity matrix can therefore be expressed simply from the mobility matrix (32),

σ =

σP −σH 0
σH σP 0
0 0 σ0

 (36)

where the matrix elements are given by (note the − sign in the definition of σH , which
we have introduced so that the conductivity is positive, see below).

σ0 = ne2 (µi + µe)

σP = ne2
(

µi

1+κ2
i
+ µe

1+κ2
e

)
σH = −ne2

(
κiµi

1+κ2
i
+ κeµe

1+κ2
e

) (37)

where, again, by specifying the masses and charges of the particles :
σ0 =

ne2

miνi
+ ne2

meνe

σP = ne2

miνi
1

1+κ2
i
+ ne2

meνe
1

1+κ2
e

σH = ne
B

(
κ2
e

1+κ2
e
− κ2

i

1+κ2
i

) (38)

The expression for σ0, the conductivity in the direction parallel to the magnetic field,
is identical to that which we would have in a non-magnetised plasma. It is dominated
by the electronic term, since, using (25), the ratio of electrons to ions is miνi/meνe =

(mi/me)
1/2(Ti/Te)

1/2 ∼ 40. We therefore have, with good accuracy, σ0 ≃ ne2

meνe
.

The values of the Pedersen and Hall terms depend on the ratio κ of the gyrofrequency
to the collision frequency, which in the ionosphere is a function of altitude, mainly due
to the variation in neutral density with altitude (and therefore the decrease in ν) as we
will see in the following paragraph.
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2.1.2 Order of magnitude of mobilities and conductivities in an isothermal
atmosphere

To identify the dominant processes at different altitudes, we return to the simpli-
fied isothermal atmosphere model presented in Section 1. The neutral density therefore
decreases with altitude according to an exponential law characterised by a height scale
H = kT/mg. The parameters used to characterise the neutral atmosphere are the same
as those in section 1.3.1.

To obtain the values of mobility and conductivity, a magnetic field model is also re-
quired : the Earth’s field is globally dipolar, B(r) = BT (r/RT )

3 where BT ≃ 0.5 G (1 G
≡ 10−4 T). For low altitudes (z−RT ≪ RT ), we therefore have B(z) ≃ BT (1− 3z/RT ).
We can therefore see that if we consider an atmospheric layer of a few hundred kilometres,
we can safely assume that the field is constant (the relative error made on B being of the
order of 3∆z/RT ∼ 10 % for ∆z = 200 km). We will therefore assume a constant field
B = 0.5 G, which does not qualitatively change the results and avoids adding too many
ingredients to the model.

Fig. 9 shows the evolution of the three components of electron mobility. We can see
that the parallel mobility µe,0 increases exponentially with altitude, since the electron-
neutral collision frequency is inversely proportional to the neutral density νe ∝ 1/n, and
n ∝ exp(−z/H).

Figure 9 – Variation with altitude of electron mobilities µe (–), µe,P (- -) and µe,H (-.-) (left
figure) and conductivities σ (–), σP (- -) and σH (-.-) normalised by ne/B (right-hand figure) in
an isothermal atmosphere of N2 at 300 K (see text for parameters).
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The Pedersen mobility µe,P is initially confused with µe,0 since, for the lower layers
of the atmosphere, κe ≪ 1 : the plasma is highly collisional and the magnetic field has
no effect on mobility. Then, at the altitude where the gyrofrequency is of the order of the
collision frequency (approximately 70 km for electrons, approximately 120 km for ions),
the two curves separate, and the conductivity perpendicular to the B field decreases as
κe increases.

The Hall mobility µe,H (which, recall, is proportional to κ/(κ2 +1)) is low at low al-
titudes and increases with altitude, until it becomes the dominant perpendicular term at
high altitudes, when collisions become infrequent (κ ≫ 1) and the movement of electrons
is effectively comparable to their magnetic drift (the mobility µ then becomes constant
since the velocity of the particles is w = F × B/B2, which is independent of altitude in
our model since the modulus of B is considered constant).

Fig. 9 also shows the evolution of conductivity (normalised by en/B) with altitude.
As we have seen, parallel conductivity is dominated by the mobility of electrons, which
is much greater than that of ions. It is therefore approximately equal to ne2/meνe and
increases exponentially with altitude.

Pedersen conductivity (in the direction parallel to E and perpendicular to B) has
two maxima. The first is around 70 km, linked to the maximum of µe,P : at this altitude,
the current is carried by electrons (for which κe ∼ 1), while the ions are still highly
collisional (κi ≪ 1). The second maximum occurs at around 130 km altitude, linked to
the maximum of µi,P , for which the current is mainly carried by ions (κi ∼ 1) while the
electrons are highly magnetised (κe ≫ 1) and move mainly via their drift motion in cross
fields in the direction perpendicular to E.

Hall conductivity is low at low altitudes (the plasma is not magnetised, κe ≪ 1
and κi ≪ 1). It becomes dominant between 80 and 120 km altitude, in the zone where
electrons are magnetised (κe ≫ 1) while ions are not (κi ≪ 1) : electrons move with their
drift motion, which is not the case for ions, which are collisional, hence the existence of
a net current in the direction perpendicular to both E and B.

At high altitude, both the ion and electron populations are relatively non-collisional
(κe ≫ 1 and κi ≫ 1). The two populations therefore move according to their drift in
crossed fields, whose speed is independent of charge and mass. The two populations are
therefore driven by the same motion, and the current, resulting from the difference in
speed between electrons and ions, therefore tends towards zero as altitude increases.

To conclude this section, it is interesting to note that the conductivity perpendicular
to the magnetic field takes on non-negligible values in a layer several tens of kilometres
thick (around the ionospheric E region). The altitude of this layer is determined by the
zone where the collision frequency between charged and neutral particles is of the order
of the gyrofrequency of electrons or ions. The fact that this altitude corresponds precisely
to the altitude of the ionisation layer (Chapman layer), i.e. the altitude where there are a
significant number of charged particles to carry the current, is a coincidence (the value of
the Earth’s magnetic field amplitude, which determines the cyclotron frequency, has no a
priori reason to be correlated with the parameters that determine the collision frequency
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and the altitude of the Chapman layer, i.e. the density of the Earth’s atmosphere and
solar irradiance). This coincidence, which is responsible for multiple electrodynamic phe-
nomena in the ionosphere (which we will return to below), will therefore not necessarily
be found in studies of other planetary ionospheres, or even in studies of the Earth’s io-
nosphere at times other than our own (as the Earth’s magnetic field and solar irradiance
vary significantly over long time scales).

2.2 Some effects of ionospheric transport

2.2.1 Ambipolar diffusion and plasma height scale

In order to calculate the typical height scale of ionised species (electrons and ions)
and show that it is different from that of neutral species, we return to expression (29)
for the velocity of electronic and ionic species (index α = e, i). We limit ourselves to the
vertical component (i.e. parallel to the acceleration due to gravity g) of the velocity and
consider a non-magnetised case (or one in which the magnetic field lines are vertical).
We also consider that the neutrals are at rest relative to the plasma. We then have,
projecting along an axis (Oz) directed upwards,{

µ−1
e we = −meg − eEz − kTe

ne

∂ne
∂z

µ−1
i wp = −mig + eEz − kTi

ni

∂ni
∂z

(39)

We further assume that ne ≃ ni ≃ n (electro-neutrality) and that we ≃ wi ≃ w
(absence of vertical current). We can eliminate the electric field by adding these two
equations and express the average velocity w of the plasma as(

1

µe
+

1

µi

)
w = −(me +mi)g −

k(Te + Ti)

n

∂n

∂z
(40)

The ratio of the mobility coefficients is

µe

µi
=

miνi
meνe

∝
√
mi/me ≫ 1, (41)

we see that we can therefore neglect the term in 1/µe in front of the term in 1/µi.
Neglecting me in front of mi in the same way, we finally obtain

w = −µimig −
Dap

n

∂n

∂z
=

1

νi

(
−g − k(Te + Ti)

nmi

∂n

∂z

)
(42)

where Dap is the so-called ambipolar diffusion coefficient,

Dap = µik(Te + Ti) =
k(Te + Ti)

miνi
. (43)
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The continuity equation for plasma, ∂tn + div nw = 0, allows us to express the
evolution of density in the form

∂n

∂t
+

∂

∂z

(
−nµimig −Dap

∂n

∂z

)
= 0 (44)

which is a Fokker-Planck equation describing the evolution of plasma density via a convec-
tion term (first term, proportional to the applied force, here mig) and a diffusion term
(second term), with a coefficient Dap. It is interesting to note that while convection oc-
curs as if the fluid were composed solely of protons (electron parameters do not come into
play), ambipolar diffusion involves electron temperature. We can see that the presence
of electrons increases the diffusion coefficient—by a factor of 2 if the electron and ion
temperatures are of the same order, and more if Te > Ti, which is generally the case.

The gravitational height scale of the plasma is determined by the equilibrium between
convection and diffusion effects. It is obtained by seeking a stationary solution to equation
(44). This must satisfy

nµimig +Dap
dn

dz
= 0, (45)

and we obtain a plasma density of the form

n(z) = n0 exp

(
−µimigz

Dap

)
= n0 exp

(
− migz

k(Te + Ti)

)
. (46)

We again find an exponentially stratified atmosphere, but the height scale is Hap =
k(Te + Ti)/mig, which is therefore larger (by a factor of about 2 if Te ≃ Ti) than that of
a neutral fluid.

This can be understood as follows : electrons, which are lighter, are much more mobile
than ions. If the ion and electron gases behaved independently of each other, the electron
gas would therefore have a much larger (∼ 2000 times larger) height scale than the ion
gas. Such a situation would create a high volume charge and a strong electric field. This
field, directed from bottom to top, would have the effect of pulling the electrons back to
the ground and decreasing their height scale, and conversely pulling the ions upwards,
increasing their height scale. The assumption of electroneutrality that we have imposed
reflects the existence of this ambipolar electric field Eap which ensures the cohesion of
the electron and ion populations.

We can calculate Eap using one of the equations (39) in the stationary case (w = 0).
We obtain

eEap =
Te

Te + Ti
mig (47)

It may be interesting to look at the effective force experienced by an ion or an electron
in the gravitational field and the ambipolar field. For an ion, we have

Fi = −mig + eE = −mig

(
1− Te

Te + Ti

)
≃ −mig

2
(48)
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and for an electron

Fe = −meg − eE ≃ −mig
Te

Te + Ti
≃ −mig

2
(49)

where the evaluations of the last member are for Te ≃ Ti. Thus, the effect of the electric
field is to decrease the effective mass of the ions by a factor of 2 and to give the electrons
an effective mass mi/2, so that the two populations have the same height scale, which is
necessary to maintain electro-neutrality in the plasma.

2.2.2 Electrodynamics of low latitudes : dynamo effect, Sq current system
and equatorial electrojet

The atmospheric dynamo effect was proposed as early as 1882 by Balfour Stewart, a
Scottish physicist who was interested in terrestrial magnetism and had noticed significant
daily variations in the horizontal component of the geomagnetic field, with periods equal
to fractions of 24 hours (solar day) and 24.8 hours (lunar day). The (simplified) theory
presented here was developed much later, in the 1960s.

The dynamo effect proceeds in the following stages :
— Strong atmospheric winds, mainly in the west → east direction, are generated in

the thermosphere (at an altitude of approximately 100 km) by the effects of lunar
and solar tides, as well as thermal effects related to the difference in temperature
between day and night.

— These winds carry with them, through viscosity (collisions), the charged particles
of the ionosphere, forcing them to move perpendicular to the Earth’s magnetic
field. They carry ions (strongly collisionally coupled to neutrals at this altitude,
κi ≪ 1) more easily than electrons (highly magnetised at this altitude, κe ≫ 1).

— This results in an electric current perpendicular to the field B and the wind
speed U, and therefore essentially vertical. However, the vertical dimension of the
conductive layer is finite (see fig.9) : the current cannot move freely, and electric
charges will accumulate at the boundaries of the conduction layer.

— The polarisation of the conduction layer creates an electric potential field which
in turn modifies the current distribution, so that the divergence of the current
distribution is zero and a steady-state equilibrium can be established.

The transport equations we derived in the previous section allow us to model these
effects. We consider that there is a movement of neutrals relative to the Earth’s surface,
with a velocity U. The expression for the current density is given by

j = σ · E’ = σ · (U × B −∇Φ) (50)

where U×B is the electromotive field and ∇Φ is the electric field due to the presence of
polarisation charges. σ is the conductivity matrix that we derived in the previous section.
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Figure 10 – Sq current system : ionospheric current lines derived from data taken at the
Huancayo Observatory in Peru. Increments of 10 kA between two successive lines. The blue
lines rotate counterclockwise and the red lines clockwise. The area of very strong West → East
currents at the diurnal equator is the equatorial electrojet.

We seek to describe the ionospheric current system that establishes itself in a steady
state. Charge conservation is written as ∂tρ+div j = 0, which implies that the divergence
of the current must be zero in such an equilibrium,

div [σ · (U × B −∇Φ)] = 0 (51)

We can see that the current field will reflect the (generally complex) shape of the wind
velocity field that is its source, as well as the conductivity structure via σ, and the tem-
poral variations (day/night for σ, related to tidal effects for U) of these parameters. We
are therefore dealing with a fairly complex structure, which we refer to as the current
system Sq. Sq refers to Solar quiet, insofar as this current system is established in the
absence of intense magnetic activity of solar origin.

To simplify the problem (and because this is where the dynamo is most effective),
we consider areas close to the Earth’s equator. We choose a coordinate system (x, y, z)
such that x points upwards, y points eastwards and z points northwards. In this coordi-
nate system, we have U = U.uy and B = B.uz. We consider a slice geometry, in which
conductivity is non-zero only in a slice of altitudes. Fig. ?? shows the geometry of the
problem.

The current in the x direction is, according to (50),

jx = σPE
′
x − σHE′

y = σP

(
UB − ∂Φ

∂x

)
+ σH

∂Φ

∂y
= 0 (52)

since in steady state there can be no net current in this direction. This relationship allows
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us to link the zonal electric field (i.e. in the west-east direction) to the vertical field

E′
x = UB − ∂Φ

∂x
= −σH

σP

∂Φ

∂y
(53)

This expression allows us to obtain the zonal current, since we know that

jy = σHE′
x + σPE

′
y = −σP

(
1 +

σ2
H

σ2
P

)
∂Φ

∂y
(54)

where σC = σP (1 + σ2
H/σ2

P ) is called Cowling’s conductivity. We can see that the effect
of charge accumulation at the boundaries of the conductive zone (represented by the
assumption jx = 0) increases the conductivity in the zonal direction by a factor of
(1 + σ2

H/σ2
P ) ∼ 100 in layer E. This increase in conductivity is the source of the strong

ionospheric current called the equatorial electrojet (see fig.10).
The Sq current system, and in particular the strong equatorial electrojet, is respon-

sible for the daily disturbances in the magnetic field, as Balfour Stewart had hypothe-
sised. These variations are illustrated in Figure 11. In practice, given the difficulties in
measuring the electric field or ionospheric currents in situ, it is these magnetic field
measurements that are currently used to infer the distribution of the current system.

2.2.3 Electrodynamics of high latitudes : couplings to the solar wind and
the magnetosphere

At high latitudes, the geomagnetic field lines are (as a first approximation) vertical.
They extend to very high altitudes and connect the ionosphere to the magnetosphere or
directly to the interplanetary medium. This connection results in a number of specific ef-
fects, in particular a system of ionospheric currents generated by the electromotive fields
of the solar wind and the magnetosphere, which is therefore different from the Sq system
observed at low and middle latitudes.

The ionosphere at high latitudes is divided into two regions. Region I is the region of
highest magnetic latitude, also known as the polar cap, where the Earth’s magnetic field
lines are directly connected to the solar wind. Region II is the region of lower latitudes,
where the magnetic field lines connect the ionosphere to the inner magnetosphere. We
will see that ionospheric currents flow in opposite directions in these two regions (and
therefore cancel each other out at the boundary between them).

Fig. 12 illustrates the connection in region I between the solar wind and the io-
nosphere. The magnetic field lines, which are highly conductive, can be considered iso-
potential, meaning that they project the interplanetary electric field onto the ionospheric
surface. This system can be thought of as an electrical circuit in which the solar wind’s
induction field acts as a generator, the magnetic field lines act as electrical cables, and
the ionosphere acts as a resistor.
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Figure 11 – Disturbances in the Earth’s magnetic field measured by five observatories located
at different magnetic latitudes between 8 and 12 October 2003. Note the polarity reversal between
low and high latitudes.

We can attempt to evaluate the power (per unit volume) injected into this circuit.
This is equal to P = −Jsw ·Esw. The current Jsw flowing in the circuit is related to the
dynamics of the solar wind plasma by

ρ
dUsw

dt
= −∇p+ Jsw × B. (55)

where ρ ≃ nswmp is the density of the solar wind. The current J⊥,sw flowing between two
field lines is obtained by taking the vector product of this equation with B and dividing
by B2,

J⊥,sw =
1

B2

(
ρB × dUsw

dt
+ B ×∇p

)
(56)

Furthermore, since the solar wind plasma is perfectly conductive, we have Esw +Usw ×
B = 0. Using the identity (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) (known as
Binet-Cauchy’s identity), we can more easily express P and obtain

P ∼ −ρUsw · dUsw

dt
(57)
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Figure 12 – Illustration of the solar wind-ionosphere magnetic connection (region I), for an
interplanetary magnetic field pointing south.

in the extremely simplified case where we have neglected the effect of the pressure gra-
dient and considered that B and Usw were perpendicular or almost perpendicular. We
can see that it is the variation in kinetic energy of the solar wind that is the source
of the system’s electrical energy : it functions like an MHD generator connected to the
ionospheric system, which acts as a passive load.

The electrical power supplied by the solar wind is transmitted along field lines to the
ionosphere, where it circulates and forms a system of currents J = σEiono, consisting of
two components : a Pedersen component aligned with the ionospheric electric field Eiono

(meridional currents), and a Hall component circulating perpendicular to Eiono and B
(zonal currents). We can see (see fig.12) that the field Eiono is directed, like Esw, from
morning to evening. We can also see that it will be more intense than the interplanetary
field, since the magnetic field lines (isopotentials) converge as they approach the Earth.
The factor between Eiono and Esw depends on the precise geometry of the field lines
(factor ∼ 50).

Figure 13 shows the geometry of the coupling between the ionosphere and the inner
magnetosphere. This coupling works in a similar way to that described above for the
solar wind, except that it is the convective motions of the magnetospheric plasma that
generate the current. As before, the ionosphere essentially acts as a passive load receiving
this current.

Since magnetospheric convection movements are directed from the tail of the magne-
tosphere towards the Sun, i.e. in the opposite direction to the convection movement of the
solar wind, the electric field projected onto the ionosphere will be oriented from evening
to morning (see figure), and the resulting ionospheric current will flow in the opposite
direction to that of the polar horn directly connected to the solar wind. The current
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Figure 13 – Schematic representation of the magnetic and electrical coupling between the
magnetosphere and ionosphere (region II)

system produced will again be separated into Pedersen and Hall components (flowing in
the meridional and zonal directions respectively), but the direction of flow is reversed
compared to the currents in region I.

The currents aligned with the magnetic field, upon entering the atmosphere, will cause
the excitation of atoms or molecules (electron-neutral collisions, which we have seen are
responsible for ionospheric conductivity effects), which, upon de-excitation, emit radia-
tion responsible for the phenomenon of diffuse and continuous aurora borealis. These
currents are called Birkeland currents, in honour of the Norwegian physicist Kristian
Birkeland, who, observing the disturbance of compasses during intense aurora borealis,
had hypothesised their existence. During periods of solar calm, Birkeland currents carry
approximately 105 A. During solar magnetic storms, their intensity can reach several
million amperes.

Fig. 14 presents an overview of the ionospheric current system at high latitudes. It
shows Birkeland currents (aligned with B and connecting to high altitudes), Pedersen
and Hall currents, and the reversal of their direction when passing from region I (polar
horn connected to the solar wind) to region II (connected to the inner magnetosphere).
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Figure 14 – Overview of the ionospheric current system at high latitudes.

— The Earth’s Ionosphere, Plasma Physics and Electrodynamics. Michael C. Kelley,
International Geophysics Series, Vol. 43, 1996

— The ionospheric E-layer and F-layer dynamos - a tutorial review. Henry Rishbeth,
Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 59, 1997

26


